COLD1 Confers Chilling Tolerance in Rice

نویسندگان

  • Yun Ma
  • Xiaoyan Dai
  • Yunyuan Xu
  • Wei Luo
  • Xiaoming Zheng
  • Dali Zeng
  • Yajun Pan
  • Xiaoli Lin
  • Huanhuan Liu
  • Dajian Zhang
  • Jun Xiao
  • Xiaoyu Guo
  • Shujuan Xu
  • Yuda Niu
  • Jingbo Jin
  • Hui Zhang
  • Xun Xu
  • Legong Li
  • Wen Wang
  • Qian Qian
  • Song Ge
  • Kang Chong
چکیده

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cold Tolerance Encoded in One SNP

Cold tolerance fundamentally affects world crop harvest. Ma et al. now identify a single-nucleotide polymorphism in a gene called COLD1 that confers cold tolerance in japonica rice. This study reveals important insights into agronomical traits that are essential for human nutrition.

متن کامل

A novel MYBS3-dependent pathway confers cold tolerance in rice.

Rice (Oryza sativa) seedlings are particularly sensitive to chilling in early spring in temperate and subtropical zones and in high-elevation areas. Improvement of chilling tolerance in rice may significantly increase rice production. MYBS3 is a single DNA-binding repeat MYB transcription factor previously shown to mediate sugar signaling in rice. In this study, we observed that MYBS3 also play...

متن کامل

Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.

Although an association between chilling tolerance and aquaporins has been reported, the exact mechanisms involved in this relationship remain unclear. We compared the expression profiles of aquaporin genes between a chilling-tolerant and a low temperature-sensitive rice variety using real-time PCR and identified seven genes that closely correlated with chilling tolerance. Chemical treatment ex...

متن کامل

New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis.

In order to understand cold adaptability and explore additional genetic resources for the cold tolerance improvement of rice, we investigated the genetic variation of 529 rice accessions under natural chilling and cold shock stress conditions at the seedling stage using genome-wide association studies; a total of 132 loci were identified. Among them, 12 loci were common for both chilling and co...

متن کامل

Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection

Rice (Oryza sativa L.) is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2015