Measuring author research relatedness: A comparison of word-based, topic-based, and author cocitation approaches

نویسندگان

  • Kun Lu
  • Dietmar Wolfram
چکیده

Relationships between authors based on characteristics of published literature have been studied for decades. Author cocitation analysis using mapping techniques has been most frequently used to study how closely two authors are thought to be in intellectual space based on how members of the research community co-cite their works. Other approaches exist to study author relatedness based more directly on the text of their published works. In this study we present static and dynamic word-based approaches using vector space modeling, as well as a topic-based approach based on Latent Dirichlet Allocation for mapping author research relatedness. Vector space modeling is used to define an author space consisting of works by a given author. Outcomes for the two word-based approaches and a topic-based approach for 50 prolific authors in library and information science are compared with more traditional author cocitation analysis using multidimensional scaling and hierarchical cluster analysis. The two word-based approaches produced similar outcomes except where two authors were frequent co-authors for the majority of their articles. The topic-based approach produced the most distinctive map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Related is Author Topical Similarity to Other Author Relatedness Measures?

Using a dataset of 26,228 Psychology document surrogates from Elsevier databases, we compare author relatedness measure outcomes for 125 authors based on topic modelling to more traditional approaches that rely on direct citation, co-citation and collaboration. Outcomes for the author topical similarity measure are compared to existing co-authorships in the dataset using UCINET/NetDraw. We demo...

متن کامل

A Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure

Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...

متن کامل

Dynamic topic detection and tracking: A comparison of HDP, C-word, and cocitation methods

Cocitation and co-word methods have long been used to detect and track emerging topics in scientific literature, but both have weaknesses. Recently, while many researchers have adopted generative probabilistic models for topic detection and tracking, few have compared generative probabilistic models with traditional cocitation and co-word methods in terms of their overall performance. In this a...

متن کامل

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

A classification of author co-citations: Definitions and search strategies

The term author co-citation is defined and classified according to four distinct forms: the pure first-author co-citation, the pure author co-citation, the general author co-citation, and the special co-author/co-citation. Each form can be used to obtain one count in an author co-citation study, based on a binary counting rule, which either recognizes the co-citedness of two authors in a given ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JASIST

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012