Glucose uptake pathway-specific regulation of synthesis of neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis.

نویسندگان

  • Takashi Inaoka
  • Kozo Ochi
چکیده

Neotrehalosadiamine (3,3'-diamino-3,3'-dideoxy-alpha,beta-trehalose; NTD) is an amino-sugar antibiotic produced by several Bacillus species that functions as an autoinducer by activating its own biosynthetic operon, ntdABC. We previously reported that the introduction of a certain rpoB mutation (rpoB5) into Bacillus subtilis enables the cells to overproduce NTD. B. subtilis mini-Tn10 transposant libraries have been screened for genes that affect NTD production. Inactivation of ccpA, which encodes a major transcriptional regulator of carbon catabolite regulation, markedly reduced NTD production. By contrast, inactivation of glcP, which is situated just downstream of ntdABC and encodes a glucose/mannose:H(+) symport permease, stimulated NTD production. Overexpression of glcP led to the repression of ntdABC expression (and thus NTD production) in response to GlcP-mediated glucose uptake. These results suggest that CcpA-mediated catabolite activation of ntdABC expression occurs in response to the increase of the in vivo concentration of fructose-1,6-bisphosphate via glucose-6-phosphate and that GlcP-mediated glucose repression of ntdABC expression occurs in association with the increase of the in vivo concentration of unphosphorylated glucose. In addition, Northern analysis showed that glcP is transcribed from the ntdABC promoter through transcription readthrough at the ntdABC transcription terminator site, which enables NTD to function as a modulator of glucose uptake through the stimulation of ntdABC-glcP transcription, even in wild-type (rpoB(+)) cells. A trace amount (0.5 to 3 mug/ml) of NTD was sufficient to ensure expression of glcP, thus demonstrating the physiological role of "antibiotic" in the producing bacteria by functioning as an autoinducer for glucose uptake modulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis.

Bacillus subtilis GlcP regulates a secondary metabolism, the neotrehalosadiamine synthesis pathway, by repressing a neotrehalosadiamine biosynthesis operon in response to glucose present in the medium. Here, we investigated, by use of transcriptome, additional effects of glcP disruption on other gene expression. In the GlcP-null mutant, the expression of alsSD and maeN was decreased, while the ...

متن کامل

RNA polymerase mutation activates the production of a dormant antibiotic 3,3'-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis.

Bacillus and Streptomyces species possess the ability to produce a variety of commercially important metabolites and extracellular enzymes. We previously demonstrated that antibiotic production in Streptomyces coeli-color A3(2) and Streptomyces lividans can be enhanced by RNA polymerase (RNAP) mutations selected for the rifampicin-resistant (Rif(r)) phenotype. Here, we have shown that the intro...

متن کامل

Regulation of the glucose-specific phosphotransferase system (PTS) of Staphylococcus carnosus by the antiterminator protein GlcT.

The ptsG operon of Staphylococcus carnosus consists of two adjacent genes, glcA and glcB, encoding glucose- and glucoside-specific enzymes II, respectively, the sugar permeases of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The expression of the ptsG operon is glucose-inducible. Putative RAT (ribonucleic antiterminator) and terminator sequences localized in the promoter r...

متن کامل

Role of orFD Pseudomonas aeruginosa H103 Gene in Glucose Uptake

Background:Pseudomonas aeruginosa is a gram negative non facultative bacterium and one of the members of normal flora in different sites of body in healthy humans.this bacterium can resist in fluids and hospital environments for a long time.Pseudomonas aeruginosa has two systems for glucose uptake:a low affinity oxidative pathway and a high affinity phosohorylative pathway.Although the role of ...

متن کامل

Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter.

Insertional mutagenesis was conducted on Bacillus subtilis cells to screen for mutants resistant to catabolite repression. Three classes of mutants that were resistant to glucose-promoted but not mannitol-promoted catabolite repression were identified. Cloning and sequencing of the mutated genes revealed that the mutations occurred in the structural genes for (i) enzyme II of the phosphoenolpyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 1  شماره 

صفحات  -

تاریخ انتشار 2007