Closing the gap for pseudo-polynomial strip packing

نویسندگان

  • Klaus Jansen
  • Malin Rau
چکیده

We study pseudo-polynomial Strip Packing. Given a set of rectangular axis parallel items and a strip with bounded width and infinite height the objective is to find a packing of the items into the strip which minimizes the packing height. We speak of pseudo-polynomial Strip Packing if we consider algorithms with pseudo-polynomial running time with respect to the width of the strip. It is known that there is no pseudo-polynomial algorithm for Strip Packing with a ratio better than 5/4 unless P = NP . The best algorithm so far has a ratio of 4/3 + ε. In this paper, we close this gap: We present an algorithm with approximation ratio 5/4 + ε. This algorithm uses a structural result which is the main accomplishment of this paper. This structural result applies to other problem settings as well, which enabled us to present algorithms with approximation ratio 5/4 + ε for Strip Packing with rotations (90 degrees) and Contiguous Moldable Task Scheduling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Approximation for Two Dimensional Strip Packing with Polynomial Bounded Width

We study the well-known two-dimensional strip packing problem. Given is a set of rectangular axis-parallel items and a strip of width W with infinite height. The objective is to find a packing of these items into the strip, which minimizes the packing height. Lately, it has been shown that the lower bound of 3/2 of the absolute approximation ratio can be beaten when we allow a pseudo-polynomial...

متن کامل

Improved Pseudo-Polynomial-Time Approximation for Strip Packing

We study the strip packing problem, a classical packing problem which generalizes both bin packing and makespan minimization. Here we are given a set of axis-parallel rectangles in the two-dimensional plane and the goal is to pack them in a vertical strip of fixed width such that the height of the obtained packing is minimized. The packing must be non-overlapping and the rectangles cannot be ro...

متن کامل

Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing

We study the Parallel Task Scheduling problem Pm|sizej |Cmax with a constant number of machines. This problem is known to be strongly NP-complete for each m ≥ 5, while it is solvable in pseudo-polynomial time for each m ≤ 3. We give a positive answer to the long-standing open question whether this problem is strongly NP -complete for m = 4. As a second result, we improve the lower bound of 12 1...

متن کامل

A Comparative Study of Exact Algorithms for the Two Dimensional Strip Packing Problem

In this paper we consider a two dimensional strip packing problem. The problem consists of packing a set of rectangular items in one strip of width W and infinite height. They must be packed without overlapping, parallel to the edge of the strip and we assume that the items are oriented, i.e. they cannot be rotated. To solve this problem, we use three exact methods: a branch and bound method, a...

متن کامل

A new metaheuristic genetic-based placement algorithm for 2D strip packing

Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.04922  شماره 

صفحات  -

تاریخ انتشار 2017