Short-term and long-term root respiratory acclimation to elevated temperatures associated with root thermotolerance for two Agrostis grass species

نویسندگان

  • Shimon Rachmilevitch
  • Hans Lambers
  • Bingru Huang
چکیده

This study was designed to investigate whether thermotolerant roots exhibit respiratory acclimation to elevated temperatures. Root respiratory acclimation traits in response to increasing temperatures were compared between two Agrostis species contrasting in heat tolerance: thermal A. scabra and heat-sensitive A. stolonifera. Roots of both species were exposed to 17, 27, or 37 degrees C. Root RGR declined with increasing temperatures from 17 degrees C to 37 degrees C in both species; however, root growth of A. scabra maintained a significantly higher RGR than A. stolonifera at 27 degrees C or 37 degrees C. A. scabra exhibited a significantly higher respiration acclimation potential to elevated temperatures, both in the short term (60 min) and in the long term (7-28 d) as compared with A. stolonifera, when temperatures increased from 17 degrees C to 27 degrees C or from 27 degrees C to 37 degrees C. Thermal A. scabra also maintained a significantly lower maintenance cost than A. stolonifera as temperatures increased to 27 degrees C or 37 degrees C. The results suggested that root thermotolerance of thermal A. scabra was associated with both short-term and long-term respiratory acclimation to changes in temperatures. The superior ability of adjusting the rate of root respiration to compensate for increases in carbon demand during short- or long-term temperature increases in the heat-tolerant A. scabra may result in the reduction in carbon expenditure or costs for maintenance, leading to extended root survivability in high temperature soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root carbon and protein metabolism associated with heat tolerance.

Extensive past efforts have been taken toward understanding heat tolerance mechanisms of the aboveground organs. Root systems play critical roles in whole-plant adaptation to heat stress, but are less studied. This review discusses recent research results revealing some critical physiological and metabolic factors underlying root thermotolerance, with a focus on temperate perennial grass specie...

متن کامل

Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species.

Respiration is a major avenue of carbohydrates loss. The objective of the present study was to examine root respiratory characteristics associated with root tolerance to high soil temperature for two Agrostis species: thermal Agrostis scabra, a species adapted to high-temperature soils in geothermal areas in Yellowstone National Park, and two cultivars ('L-93' and 'Penncross') of a cool-season ...

متن کامل

Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance

Protein metabolism plays an important role in plant adaptation to heat stress. This study was designed to identify heat-responsive proteins in roots associated with thermotolerance for two C3 grass species contrasting in heat tolerance, thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L. Plants were exposed to 20 degrees C (control), 30 C (moderate heat stress), or 40 degrees C (...

متن کامل

Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance

Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems...

متن کامل

Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine.

Increasing global temperatures could potentially cause large increases in root respiration and associated soil CO2 efflux. However, if root respiration acclimates to higher temperatures, increases in soil CO2 efflux from this source would be much less. Throughout the snow-free season, we measured fine root respiration in the field at ambient soil temperature in a sugar maple (Acer saccharum Mar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Experimental Botany

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2008