A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors

نویسندگان

  • Yu Song
  • Stephen Nuske
  • Sebastian Scherer
چکیده

State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter

In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...

متن کامل

Vision-based MAV Navigation: Implementation Challenges Towards a Usable System in Real-Life Scenarios

In this workshop, we share our experience on autonomous flights with a MAV using a monocular camera as the only exteroceptive sensor. We developed a flexible and modular framework for realtime onboard MAV navigation fusing visual data with IMU at a rate of 1 kHz. We aim to provide a detailed insight of how our modules work and how they are used in our system. Using this framework, we achieved u...

متن کامل

Real Time Filter and Fusion of Multi-sensor Data for Localization of Mobile Robot

This project work presents the sensor fusion of Global Positioning System (GPS), Inertial Measurement Unit (IMU) and Odometry data from wheel encoders which is used to estimate localization of mobile robot. GPS, IMU, Wheel encoders are interfaced with MBED. Filters are used to remove erroneous noise from the data obtained from sensors. Low pass IIR filter is used for Differential Global Positio...

متن کامل

Autonomous Navigation in a Warehouse with a Cognitive Micro Aerial Vehicle

Micro aerial vehicles (MAVs), such as multirotors, are envisioned for autonomous inventory-taking in large warehouses. Fully autonomous operation of MAVs in such complex 3D environments requires real-time state estimation, obstacle detection, mapping, and navigation planning. To this end, we employ a cognitive MAV equipped with multiple sensors including a dual 3D laser scanner, three stereo ca...

متن کامل

Observability Analysis for the INS Error Model with GPS/Uncalibrated Magnetometer Aiding

A stand-alone inertial navigation system (INS) yields time-diverging solutions due to errors in the inertial sensors, which can inhibit long term navigation. To circumvent this issue, a set of non-inertial sensors is used to limit these errors. The fusion between additional data and INS solution is often done by means of an extended Kalman filter using a stateerror model. However, the Kalman fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016