Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1.

نویسندگان

  • Zhou Zhang
  • Zhen Tao
  • Armanda Gameiro
  • Stephanie Barcelona
  • Simona Braams
  • Thomas Rauen
  • Christof Grewer
چکیده

Glutamate transport by the excitatory amino acid carrier EAAC1 is known to be reversible. Thus, glutamate can either be taken up into cells, or it can be released from cells through reverse transport, depending on the electrochemical gradient of the co- and countertransported ions. However, it is unknown how fast and by which reverse transport mechanism glutamate can be released from cells. Here, we determined the steady- and pre-steady-state kinetics of reverse glutamate transport with submillisecond time resolution. First, our results suggest that glutamate and Na(+) dissociate from their cytoplasmic binding sites sequentially, with glutamate dissociating first, followed by the three cotransported Na(+) ions. Second, the kinetics of glutamate transport depend strongly on transport direction, with reverse transport being faster but less voltage-dependent than forward transport. Third, electrogenicity is distributed over several reverse transport steps, including intracellular Na(+) binding, reverse translocation, and reverse relocation of the K(+)-bound EAAC1. We propose a kinetic model, which is based on a "first-in-first-out" mechanism, suggesting that glutamate association, with its extracellular binding site as well as dissociation from its intracellular binding site, precedes association and dissociation of at least one Na(+) ion. Our model can be used to predict rates of glutamate release from neurons under physiological and pathophysiological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperation of the Conserved Aspartate 439 and Bound Amino Acid Substrate Is Important for High-Affinity Na+ Binding to the Glutamate Transporter EAAC1

The neuronal glutamate transporter EAAC1 contains several conserved acidic amino acids in its transmembrane domain, which are possibly important in catalyzing transport and/or binding of co/countertransported cations. Here, we have studied the effects of neutralization by site-directed mutagenesis of three of these amino acid side chains, glutamate 373, aspartate 439, and aspartate 454, on the ...

متن کامل

Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds.

The activity of glutamate transporters is essential for the temporal and spatial regulation of the neurotransmitter concentration in the synaptic cleft, and thus, is crucial for proper excitatory signaling. Initial steps in the process of glutamate transport take place within a time scale of microseconds to milliseconds. Here we compare the steady-state and pre-steady-state kinetics of the neur...

متن کامل

On the Mechanism of Proton Transport by the Neuronal Excitatory Amino Acid Carrier 1

Uptake of glutamate from the synaptic cleft is mediated by high affinity transporters and is driven by Na(+), K(+), and H(+) concentration gradients across the membrane. Here, we characterize the molecular mechanism of the intracellular pH change associated with glutamate transport by combining current recordings from excitatory amino acid carrier 1 (EAAC1)-expressing HEK293 cells with a rapid ...

متن کامل

Effect of benzodiazepines on the epithelial and neuronal high-affinity glutamate transporter EAAC1.

EAAC1-mediated glutamate transport concentrates glutamate across plasma membranes of brain neurons and epithelia. In brain, EAAC1 provides a presynaptic uptake mechanism to terminate the excitatory action of released glutamate and to keep its extracellular concentration below toxic levels. Here we report the effect of well known anxiolytic compounds, benzodiazepines, on glutamate transport in E...

متن کامل

Early Intermediates in the Transport Cycle of the Neuronal Excitatory Amino Acid Carrier Eaac1

Electrogenic glutamate transport by the excitatory amino acid carrier 1 (EAAC1) is associated with multiple charge movements across the membrane that take place on time scales ranging from microseconds to milliseconds. The molecular nature of these charge movements is poorly understood at present and, therefore, was studied in this report in detail by using the technique of laser-pulse photolys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 46  شماره 

صفحات  -

تاریخ انتشار 2007