Structural properties of extremal asymmetric colorings

نویسنده

  • Oleg Verbitsky
چکیده

Let Ω be a space with probability measure μ for which the notion of symmetry is defined. Given A ⊆ Ω, let ms(A) denote the supremum of μ(B) over symmetric B ⊆ A. An r-coloring of Ω is a measurable map χ : Ω → {1, . . . , r} possibly undefined on a set of measure 0. Given an r-coloring χ, let ms(Ω;χ) = max1≤i≤r ms(χ (i)). With each space Ω we associate a Ramsey type number ms(Ω, r) = infχ ms(Ω;χ). We call a coloring χ congruent if the monochromatic classes χ(1), . . . , χ(r) are pairwise congruent, i.e., can be mapped onto each other by a symmetry of Ω. We define ms(Ω, r) to be the infimum of ms(Ω;χ) over congruent χ. We prove that ms(S, r) = ms(S, r) for the unitary circle S endowed with standard symmetries of a plane, estimatems([0, 1), r) for the unitary interval of reals considered with central symmetry, and explore some other regularity properties of extremal colorings for various spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidding Rainbow-colored Stars

We consider an extremal problem motivated by a paper of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge-colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given r ≥ t ≥ 2, we look for n-vertex graphs that admit the maximum number of r-edge-colorings such that at...

متن کامل

Extremal Colorings and Extremal Satisfiability

Combinatorial problems are often easy to state and hard to solve. A whole bunch of graph coloring problems falls into this class as well as the satisfiability problem. The classical coloring problems consider colorings of objects such that two objects which are in a relation receive different colors, e.g., proper vertex-colorings, proper edge-colorings, or proper face-colorings of plane graphs....

متن کامل

Extremal H-colorings of trees and 2-connected graphs

For graphs G and H, an H-coloring of G is an adjacency preserving map from the vertices of G to the vertices of H. H-colorings generalize such notions as independent sets and proper colorings in graphs. There has been much recent research on the extremal question of finding the graph(s) among a fixed family that maximize or minimize the number of H-colorings. In this paper, we prove several res...

متن کامل

A Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor

The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...

متن کامل

The maximum number of K3-free and K4-free edge 4-colorings

Let F (n, r, k) denote the maximum number of edge r-colorings without a monochromatic copy of Kk that a graph with n vertices can have. Addressing two questions left open by Alon, Balogh, Keevash, and Sudakov [J. London Math. Soc., 70 (2004) 273–288], we determine F (n, 4, 3) and F (n, 4, 4) and describe the extremal graphs for all large n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003