G Eom Etrie Alg Ebrique/algebraic Geometry a Complex Hyperbolic Structure for Moduli of Cubic Surfaces Version Frann Caise Abr Eg Ee
نویسندگان
چکیده
We show that the moduli space M of marked cubic surfaces is biholomorphic to (B 4 ? H)=? 0 where B 4 is complex hyperbolic four-space, where ? 0 is a speciic group generated by complex reeections, and where H is the union of reeection hyperplanes for ? 0. Thus M has complex hyperbolic structure, i.e., an (incomplete) metric of constant holomorphic sectional curvature. Une structure hyperbolique complexe pour les modules des surfaces cubiques R esum e. Nous montrons que l' espace des modules M des surfaces cubiques marqu ees est biholomorphe a (B 4 ? H)=? 0 o u B 4 est l' espace complexe hyperbolique de dimenson quatre, o u ? 0 est un groupe sp eciique gen er e par des reeections complexes, et o u H est l'union de l'ensemble d'hyperplans de reeections de ? 0. Donc M admet une structure hyperbolique complexe, c'est a dire une m etrique (incompl ete) de courbure holomorphe sectionelle constante. A une surface cubique (marqu ee) correspond une vari et e cubique de dimension trois (marqu ee), a savoir le rev^ etement de P 3 ramii e le long la surface. L'application des periodes f pour ces vari et es de dimension trois est d eenie sur l' espace des modules M des cubiques marqu ees, et cette application f prend ses valeurs dans une quotient de la boule unitaire dans C 4 par l'action du groupe de monodromie projective. Ce groupe ? 0 est gen er e par des reeections complexes dans un ensemble d'hyperplans dont la r eunion nous notons par H. Alors nous avons le resultat suivant: Th eor eme. L'application des periodes d eenit une biholomorphisme
منابع مشابه
Geometric Theory of Parshin Residues
This is a brief summary of results. More detailed papers are in preparation. Preliminary versions of the detailed papers are available on the arxiv.org ([MM1],[MM2]). We study the theory of Parshin residues from the geometric point of view. In particular, the residue is expressed in terms of an integral over a smooth cycle. Parshin-Lomadze Reciprocity Law for residues in complex case is proved ...
متن کاملBi-harmonic Functions on Groups
| Two natural deenitions of bi-harmonic functions on countable groups are shown to essentially coincide. Criteria of absence of non-constant bounded bi-harmonic functions are formulated. A description of these functions for free groups is given. Fonctions bi-harmoniques sur les groupes R esum e R esum e | Nous montrons l' equivalence essentielle de deux d eenitions naturelles des fonctions bi-h...
متن کاملA Toric Ring with Irrational Poincar E-betti Series
{ We show that there exists a toric curve in P 8 , whose homogeneous coordinate ring has a presentation with 12 quadratic relations and whose Poincar e-Betti series is irrational. The example was found by a computer search, aiming at a homological classiication of those toric curves that have a quadratic presentation in P n?1 for n 9. Some other consequences of this search are also presented. U...
متن کاملThe uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surface II
The relation between the uniformizing equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces and an AppellLauricella hypergeometric system in nine variables is clarified.
متن کاملSIMPLE CURVES ON TORI 1 Content - Length : 21789 X - Lines : 501 Status : ROSimple curves on hyperbolic toriBy
Let T be a once punctured torus, equipped with a complete hyperbolic metric. Herein, we describe a new approach to the study of the set S of all simple geodesics on T: We introduce a valuation on the homology H 1 (T; ZZ); which associates to each homology class h the length`(h) of the unique simple geodesic homologous to h; and show thatèxtends to a norm on H 1 (T; R): We analyze the boundary o...
متن کامل