Estrogen Protects the Female Heart from Ischemia/Reperfusion Injury through Manganese Superoxide Dismutase Phosphorylation by Mitochondrial p38β at Threonine 79 and Serine 106

نویسندگان

  • Tao Luo
  • Han Liu
  • Jin Kyung Kim
چکیده

A collective body of evidence indicates that estrogen protects the heart from myocardial ischemia/reperfusion (I/R) injury, but the underlying mechanism remains incompletely understood. We have previously delineated a novel mechanism of how 17β-estradiol (E2) protects cultured neonatal rat cardiomyocytes from hypoxia/reoxygenation (H/R) by identifying a functionally active mitochondrial pool of p38β and E2-driven upregulation of manganese superoxide dismutase (MnSOD) activity via p38β, leading to the suppression of reactive oxygen species (ROS) and apoptosis. Here we investigate these cytoprotective actions of E2 in vivo. Left coronary artery ligation and reperfusion was used to produce I/R injury in ovariectomized (OVX) female mice and in estrogen receptor (ER) null female mice. E2 treatment in OVX mice reduced the left ventricular infarct size accompanied by increased activity of mitochondrial p38β and MnSOD. I/R-induced infarct size in ERα knockout (ERKO), ERβ knockout (BERKO) and ERα and β double knockout (DERKO) female mice was larger than that in wild type (WT) mice, with little difference among ERKO, BERKO, and DERKO. Loss of both ERα and ERβ led to reduced activity of mitochondrial p38β and MnSOD at baseline and after I/R. The physical interaction between mitochondrial p38β and MnSOD in the heart was detected by co-immunoprecipitation (co-IP). Threonine 79 (T79) and serine 106 (S106) of MnSOD were identified to be phosphorylated by p38β in kinase assays. Overexpression of WT MnSOD in cardiomyocytes reduced ROS generation during H/R, while point mutation of T79 and S106 of MnSOD to alanine abolished its antioxidative function. We conclude that the protective effects of E2 and ER against cardiac I/R injury involve the regulation of MnSOD via posttranslational modification of the dismutase by p38β.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial p38β and Manganese Superoxide Dismutase Interaction Mediated by Estrogen in Cardiomyocytes

AIMS While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2) protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R) by inhibiting p38α - p53 signaling in apoptosis and ...

متن کامل

MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia-reperfusion injury.

Manganese superoxide dismutase (MnSOD) is one of the main antioxidant enzymes that protects the heart against ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) is a short period of ischemia-reperfusion that reduces subsequent prolonged I/R injury. Although MnSOD localizes in mitochondria, the immediate subcellular distribution of MnSOD in heart after IPC and I/R has not been stu...

متن کامل

Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β.

AIMS we have previously shown that 17-β-estradiol (E2) protects cardiomyocytes exposed to simulated ischaemia-reperfusion (I/R) by differentially regulating pro-apoptotic p38α mitogen-activated protein kinase (p38α MAPK) and pro-survival p38β. However, little is known about how E2 modulation of these kinases alters apoptotic signalling. An attractive downstream target is p53, a well-known media...

متن کامل

Combined postconditioning with ischemia and cyclosporine-A restore oxidative stress and histopathological changes in reperfusion injury of diabetic myocardium

Objective(s): Chronic diabetes impedes cardioprotection in reperfusion injury and hence protecting the diabetic heart would have important outcomes. In this study, we evaluated whether combined postconditioning with ischemia and cyclosporine-A can restore oxidative stress and histopathological changes in reperfusion injury of the diabetic myocardium. Materials and Methods: Streptozocin-induced ...

متن کامل

Salen Mn Complexes are Superoxide Dismutase/Catalase Mimetics that Protect the Mitochondria

Salen Mn complexes, including EUK-134, EUK-189 and a cyclized analog EUK-207, are synthetic superoxide dismutase (SOD) and catalase mimetics that are beneficial in many models of oxidative stress. Though not designed to target the mitochondria, salen Mn complexes show "mito-protective" activity, that is, an ability to attenuate mitochondrial injury, in various experimental systems. Treatment wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016