Equidistribution of Expanding Measures with Local Maximal Dimension and Diophantine Approximation
نویسنده
چکیده
We consider improvements of Dirichlet’s Theorem on space of matrices Mm,n(R). It is shown that for a certain class of fractals K ⊂ [0, 1] ⊂ Mm,n(R) of local maximal dimension Dirichlet’s Theorem cannot be improved almost everywhere. This is shown using entropy and dynamics on homogeneous spaces of Lie groups.
منابع مشابه
Equidistribution of Expanding Translates of Curves and Dirichlet’s Theorem on Diophantine Approximation
We show that for almost all points on any analytic curve on R which is not contained in a proper affine subspace, the Dirichlet’s theorem on simultaneous approximation, as well as its dual result for simultaneous approximation of linear forms, cannot be improved. The result is obtained by proving asymptotic equidistribution of evolution of a curve on a strongly unstable leaf under certain parti...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملOpen Diophantine Problems
Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...
متن کاملDiophantine Approximation by Orbits of Expanding Markov Maps
Given a dynamical system ([0, 1], T ), the distribution properties of the orbits of real numbers x ∈ [0, 1] under T constitute a longstanding problem. In 1995, Hill and Velani introduced the ”shrinking targets” theory, which aims at investigating precisely the Hausdorff dimensions of sets whose orbits are close to some fixed point. In this paper, we study the sets of points well-approximated by...
متن کاملSyllabus and Reading List for Eskin-kleinbock Course
1. General introduction, Birkhoff’s Ergodic Theorem vs. Ratner’s Theorems on unipotent flows; measure classification implies classification of orbit closures; uniform convergence and the theorem of Dani-Margulis; the statement of the Oppenheim Conjecture. 2. The case of SL(2, R) (the mixing argument). We will be loosely following Ratner’s paper [18]. 3. The classification of invariant measures ...
متن کامل