Profiles of miRNAs matched to biology in aromatase inhibitor resistant breast cancer
نویسندگان
چکیده
Aromatase inhibitor (AI) resistance during breast cancer treatment is mimicked by MCF-7:5C (5C) and MCF-7:2A (2A) cell lines that grow spontaneously. Survival signaling is reconfigured but cells are vulnerable to estradiol (E2)-inducible apoptosis. These model systems have alterations of stress related pathways including the accumulation of endoplasmic reticulum, oxidative, and inflammatory stress that occur prior to E2-induced apoptosis. We investigated miRNA expression profiles of 5C and 2A to characterize their AI resistance phenotypes. Affymetrix GeneChip miRNA2.0 arrays identified 184 miRNAs differentially expressed in 2A and 5C compared to E2-free wild-type MCF-7:WS8. In 5C, 34 miRNAs of the DLK1-DIO3 locus and miR-31 were overexpressed, whereas miR-222 was low. TCGA data revealed poor and favorable overall survival for low miR-31 and miR-222 levels, respectively (HR=3.0, 95% CI:1.9-4.8; HR=0.3, 95% CI:0.1-0.6). Targets of deregulated miRNAs were identified using CLIP-confirmed TargetScan predictions. KEGG enrichment analyses for 5C- and 2A-specific target gene sets revealed pathways associated with cell proliferation including insulin, mTOR, and ErbB signaling as well as immune response and metabolism. Key genes overrepresented in 5C- and 2A-specific pathway interaction networks including EGFR, IGF1R and PIK3R1 had lower protein levels in 5C compared to 2A and were found to be differentially modulated by respective miRNA sets. Distinct up-regulated miRNAs from the DLK1-DIO3 locus may cause these attenuative effects as they are predicted to interact with corresponding 3' untranslated regions. These new miRNA profiles become an important regulatory database to explore E2-induced apoptotic mechanisms of clinical relevance for the treatment of resistant breast cancer.
منابع مشابه
Experimental Therapeutics, Molecular Targets, and Chemical Biology Heat Shock Protein 90 Inhibitors: New Mode of Therapy to Overcome Endocrine Resistance
Aromatase inhibitors are important drugs to treat estrogen receptor α (ERα)–positive postmenopausal breast cancer patients. However, development of resistance to aromatase inhibitors has been observed. We examined whether the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) can inhibit the growth of aromatase inhibitor–resistant breast canc...
متن کاملTumor and Stem Cell Biology GDNF–RET Signaling in ER-Positive Breast Cancers Is a Key Determinant of Response and Resistance to Aromatase Inhibitors
Most breast cancers at diagnosis are estrogen receptor-positive (ERþ) and depend on estrogen for growth and survival. Blocking estrogen biosynthesis by aromatase inhibitors has therefore become a first-line endocrine therapy for postmenopausal women with ERþ breast cancers. Despite providing substantial improvements in patient outcome, aromatase inhibitor resistance remains amajor clinical chal...
متن کاملMicroRNAs as biomarkers associated with bladder cancer
Bladder cancer is the fifth most common cancer with significant morbidity and mortality. Recently, numerous studies demonstrated that microRNAs are emerging as diagnostic biomarkers for bladder cancer. Specific miRNA profiles have been identified for several samples from patients with bladder cancer. MicroRNAs are noncoding RNA molecules of approximately 23 nucleotides that play important roles...
متن کاملRoles for miRNAs in endocrine resistance in breast cancer.
Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The...
متن کاملComparative proteomics study of proteins involved in induction of higher rates of cell death in mitoxantrone-resistant breast cancer cells MCF-7/MX exposed to TNF-α
Objective(s): Resistance to medications is one of the main complications in chemotherapy of cancer. It has been shown that some multidrug resistant cancer cells indicate more sensitivity against cytotoxic effects of TNF-α compared to their parental cells. Our previous findings indicated vulnerability of the mitoxantrone-resistant breast cancer cells MCF-7/MX to cell de...
متن کامل