Autonomously generating efficient running of a quadruped robot using delayed feedback control

نویسندگان

  • Zu Guang Zhang
  • Hiroshi Kimura
  • Yasuhiro Fukuoka
چکیده

We report on the design and stability analysis of a simple quadruped running controller that can autonomously generate steady running of a quadruped with good energy efficiency and suppress such disturbances as irregularities of terrain. In this paper, we first consider the fixed point of quasi-passive running based on a sagittal plane model of a quadruped robot. Next, we regard friction and collision as disturbances around the fixed point of quasi-passive running, and propose an original control method to suppress these disturbances. Since it is difficult to accurately measure the total energy of the system in a practical application, we use a delayed feedback control (DFC) method based on the stance phase period measured by contact sensors on the robot’s feet with practical accuracy. The DFC method not only stabilizes running around a fixed point, but also results in the transition from standing to steady running and stabilization in running up a small step. The effectiveness of the proposed control method is validated by simulations. MPEG footage of these simulations can be viewed at: http://www.kimura.is.uec.ac.jp/running.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rush: a simple and autonomous quadruped running robot

In this paper, the system design and analysis of a quadruped robot, Rush, are presented. The quadruped robot was fabricated to study autonomous and efficient running on flat and rough terrain. It is a compact, kneed, four-legged machine with only one actuator per compliant leg. A novel control strategy for the quadruped robot has been proposed in consideration of several engineering limitations...

متن کامل

Adaptive Running of a Quadruped Robot Using Forced Vibration and Synchronization

In this paper we regard legged locomotion (e.g., running) as adaptive vibration, which is capable of adapting to changes in internal parameters and in the external environment. We propose control concepts for such adaptive running in general, and present a theoretical study of the bounding locomotion of a quadruped robot according to the proposed control concepts. In our control method, a force...

متن کامل

Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains

Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...

متن کامل

Biologically Inspired Neural Controllers for Motor Control in a Quadruped Robot

This paper presents biologically inspired neural controllers for generating motor patterns in a quadruped robot. Sets of arti cial neural networks are presented which provide 1) pattern generation and gait control, allowing continuous passage from walking to trotting to galloping, 2) control of sitting and lying down behaviors, and 3) control of scratching. The neural controllers consist of set...

متن کامل

Online Planning for Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds

This paper presents a new framework for the generation of high-speed running jumps to clear terrain obstacles in quadrupedal robots. Our methods enable the quadruped to autonomously jump over obstacles up to 40 cm in height within a single control framework. Specifically, we propose new control system components, layered on top of a low-level running controller, which actively modify the approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced Robotics

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2006