Computing Crossing Numbers

نویسنده

  • Markus Chimani
چکیده

The graph theoretic problem of crossing numbers has been around for over 60 years, but still very little is known about this simple, yet intricate nonplanarity measure. The question is easy to state: Given a graph, draw it in the plane with the minimum number of edge crossings. A lot of research has been devoted to giving an answer to this question, not only by graph theoreticians, but also by computer scientists. The crossing number is central to areas like chip design and automatic graph drawing. While there are algorithms to solve the problem heuristically, we know that it is in general NP-complete. Furthermore, we do not know if the problem is efficiently approximable, except for some special cases. In this thesis, we tackle the problem using Mathematical Programming. We show how to formulate the crossing number problem as systems of linear inequalities, and discuss how to solve these formulations for reasonably sized graphs to provable optimality in acceptable time—despite its theoretical complexity class. We present non-standard branch-and-cut-and-price techniques to achieve this goal, and introduce an efficient preprocessing algorithm, also valid for other traditional non-planarity measures. We discuss extensions of these ideas to related crossing number variants arising in practice, and show a practical application of a formerly purely theoretic crossing number derivative. The thesis also contains an extensive experimental study of the formulations and algorithms presented herein, and an outlook on its applicability for graph theoretic questions regarding the crossing numbers of special graph classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the crossing numbers of Cartesian products with trees

Zip product was recently used in a note establishing the crossing number of the Cartesian product K1,n2Pm. In this paper, we further investigate the relations of this graph operation with the crossing numbers of graphs. First, we use a refining of the embedding method bound for crossing numbers to weaken the connectivity condition under which the crossing number is additive for the zip product....

متن کامل

The crossing numbers of products of path with graphs of order six

The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. For the path Pn of length n, the crossing numbers of Cartesian products G Pn for all connected graphs G on five vertices are also known. In this paper, the crossing numbers of Cartesian products G Pn for graphs G of order six are studied. Let H denote the unique tree of order si...

متن کامل

On the crossing numbers of Cartesian products of stars and graphs of order six

The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. According to their special structure, the class of Cartesian products of two graphs is one of few graph classes for which some exact values of crossing numbers were obtained. The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are ...

متن کامل

Some crossing numbers of products of cycles

The exact values of crossing numbers of the Cartesian products of four special graphs of order five with cycles are given and, in addition, all known crossing numbers of Cartesian products of cycles with connected graphs on five vertices are summarized.

متن کامل

One- and two-page crossing numbers for some types of graphs

The simplest graph drawing method is that of putting the vertices of a graph on a line (spine) and drawing the edges as half-circles on k half planes (pages). Such drawings are called k-page book drawings and the minimal number of edge crossings in such a drawing is called the k-page crossing number. In a one-page book drawing, all edges are placed on one side of the spine, and in a two-page bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008