Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

نویسندگان

  • U. Feister
  • J. Junk
  • M. Woldt
  • A. Bais
  • A. Helbig
  • M. Janouch
  • W. Josefsson
  • A. Kazantzidis
  • A. Lindfors
چکیده

Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions. Correspondence to: U. Feister ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive comment on “Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)” by U. Feister et al

General Comments: The title of the paper will be changed to account also for spatial characteristics that are discussed in the paper to Long-term reconstruction of solar UV radiation by the Artificial Neural Networks (ANN) model with emphasis on spatial characteristics of input data Specific Comments: Reviewer: In the Introduction I’ld suggest to motivate the choice of use the daily total...

متن کامل

Interactive comment on “Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)” by U. Feister et al

The introduction states, that the study focuses inter alia on small-scale spatial characteristics that have been derived from data at two sites with small spatial distance (Potsdam and Lindenberg). From my point of view interesting is the finding of increased differences in daily sunshine duration on short distances compared e.g. to global irradiation. It will restrict significance in spatial d...

متن کامل

Long-term solar UV radiation reconstructed by ANN

Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN) U. Feister, J. Junk, and M. Woldt Deutscher Wetterdienst, Richard Aßmann Observatorium Lindenberg, Am Observatorium 12, 15848 Lindenberg, Germany Public Research Centre – Gabriel Lippmann, Department of Environment and Agro-Biotechnologies (EVA), 41, rue du Brill, 4422 B Grand-Duchy of Luxembourg, Luxembourg Brandenb...

متن کامل

Interactive comment on “Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)” by U. Feister et al

This study applies Artificial Neural Networks (ANN) to reconstruct daily erythemally effective (ERY) doses of UV radiation (predictands) in the past for 8 European sites and additionally daily doses of UV-A and UV-B radiation for the nearby German sites Potsdam and Lindenberg. They use as ancillary input (predictors) long-term available meteorological data on parameters affecting UV radiation. ...

متن کامل

ارزیابی عملکرد شبکۀ عصبی مصنوعی در پیش‌بینی تابش خورشیدی روزانۀ کشور ایران

Iran has an average of 5.5 KWh per square meter solar radiation and 300 sunny days per year on 90% of the land. Regarding this amount of solar radiation and the necessity for solar potential zoning for better efficiencies, drawing solar potential maps is essential. In this study, the monthly data of 39 synoptic of Iran meteorological stations over years (1991-2000) has been used as the input da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008