Representation of uniform B-spline curve by Eulerian numbers
نویسنده
چکیده
Investigating the Eulerian numbers and uniform B-spline recurrence relations, a connection between Eulerian numbers and B-spline values at knot points is proved, and a relation to inner products of uniform B-splines is shown. This connection allows, with few operations, to evaluate the B-spline curve at domain knots and could be utilized to obtain an easy approximation and representation of B-spline curves.
منابع مشابه
1 9 Se p 20 08 A spline interpretation of Eulerian numbers ∗
Abstract In this paper, we explore the interrelationship between Eulerian numbers and B splines. Specifically, using B splines, we give the explicit formulas of the refined Eulerian numbers, and descents polynomials. Moreover, we prove that the coefficients of descent polynomials D d (t) are logconcave. This paper also provides a new approach to study Eulerian numbers and descent polynomials.
متن کاملSe p 20 08 A spline interpretation of Eulerian numbers ∗
Abstract In this paper, we explore the interrelationship between Eulerian numbers and B splines. Specifically, using B splines, we give the explicit formulas of the refined Eulerian numbers, and descents polynomials. Moreover, we prove that the coefficients of descent polynomials D d (t) are logconcave. This paper also provides a new approach to study Eulerian numbers and descent polynomials.
متن کاملEulerian polynomials and B-splines
Here presented is the interrelationship between Eulerian polynomials, Eulerian fractions and Euler-Frobenius polynomials, Euler-Frobenius fractions, Bsplines, respectively. The properties of Eulerian polynomials and Eulerian fractions and their applications in B-spline interpolation and evaluation of Riemann zeta function values at odd integers are given. The relation between Eulerian numbers a...
متن کاملEuler–frobenius Numbers and Rounding
We study the Euler–Frobenius numbers, a generalization of the Eulerian numbers, and the probability distribution obtained by normalizing them. This distribution can be obtained by rounding a sum of independent uniform random variables; this is more or less implicit in various results and we try to explain this and various connections to other areas of mathematics, such as spline theory. The mea...
متن کاملA general matrix representation for non-uniform B-spline subdivision with boundary control
Boundary conditions are still an open question in the field of approximating subdivision since the problem of determining a general construction of the endpoint rules we need when subdividing a B-spline curve/surface with Bézier end conditions has not been solved yet. This consideration prompted us to present an efficient algorithm for the conversion between B-spline bases defined over differen...
متن کامل