Automated blood vessel extraction using local features on retinal images

نویسندگان

  • Yuji Hatanaka
  • Kazuki Samo
  • Mikiya Tajima
  • Kazunori Ogohara
  • Chisako Muramatsu
  • Susumu Okumura
  • Hiroshi Fujita
چکیده

An automated blood vessel extraction using high-order local autocorrelation (HLAC) on retinal images is presented. Although many blood vessel extraction methods based on contrast have been proposed, a technique based on the relation of neighbor pixels has not been published. HLAC features are shift-invariant; therefore, we applied HLAC features to retinal images. However, HLAC features are weak to turned image, thus a method was improved by the addition of HLAC features to a polar transformed image. The blood vessels were classified using an artificial neural network (ANN) with HLAC features using 105 mask patterns as input. To improve performance, the second ANN (ANN2) was constructed by using the green component of the color retinal image and the four output values of ANN, Gabor filter, double-ring filter and black-top-hat transformation. The retinal images used in this study were obtained from the "Digital Retinal Images for Vessel Extraction" (DRIVE) database. The ANN using HLAC output apparent white values in the blood vessel regions and could also extract blood vessels with low contrast. The outputs were evaluated using the area under the curve (AUC) based on receiver operating characteristics (ROC) analysis. The AUC of ANN2 was 0.960 as a result of our study. The result can be used for the quantitative analysis of the blood vessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

Artery Vein Classification of Blood Vessels in Retinal Image: an Automated Approach

Artery/Vein (A/V) of retinal vessel is helpful for the automating the detection of various diseases such as Diabetic Retinography, high blood pressure, pancreas, and other vascular conditions. An automated approach is presented in this paper for classification of blood vessels into Artery/Vein based on the features extracted from the centerline pixels. The proposed method consists of 4 importan...

متن کامل

An Automated Tracking Approach for Extraction of Retinal Vasculature in Fundus Images

PURPOSE To present a novel automated method for tracking and detection of retinal blood vessels in fundus images. METHODS For every pixel in retinal images, a feature vector was computed utilizing multiscale analysis based on Gabor filters. To classify the pixels based on their extracted features as vascular or non-vascular, various classifiers including Quadratic Gaussian (QG), K-Nearest Nei...

متن کامل

Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable a...

متن کامل

Automated characterization of blood vessels as arteries and veins in retinal images

In recent years researchers have found that alternations in arterial or venular tree of the retinal vasculature are associated with several public health problems such as diabetic retinopathy which is also the leading cause of blindness in the world. A prerequisite for automated assessment of subtle changes in arteries and veins, is to accurately separate those vessels from each other. This is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016