Calcium-alginate gel bead cross-linked with gelatin as microcarrier for anchorage-dependent cell culture.

نویسندگان

  • Young Jik Kwon
  • Ching-An Peng
چکیده

Valuable products obtainedfrom the cultivation of anchorage-dependent mammalian cells require large-scale processes to obtain commercially useful quantities. It is generally accepted that suspension culture is the ideal mode of operation. Because anchorage-dependent cells need surfaces to be able to attach and spread, the incorporation of microcarriers to suspension culture is indispensable. Since the dextran-based microcarrier wasfirst introduced, many different types of microcarriers have been developed and commercialized. In this study, alginate-based microcarriers were made in the following order: (i) calcium-alginate gel beads prepared by dropping a blend of sodium alginate and propylene glycol alginate (PGA) into calcium chloride solution, (ii) the PGA section of gel beads cross-linked with gelatin in alkaline solution (i.e., via the transacylation reaction between the ester group of PGA and amino group of gelatin), and (iii) gelatin membrane around the beads further cross-linked by glutaraldehyde. The glutaraldehyde-treated gelatintransacylated PGA/alginate microcarrier showed superior features in high stability under phosphate-containing solution, density close to that of culture medium, and transparency. Moreover, the Chinese hamster ovary CHO-KI and amphotropic retrovirus producer PA317 cells cultivated on the newly synthesized microcarriers exhibited similar growth kinetics of these two types of cell lines cultured on commercial polystyrene microcarriers. However, cell morphology was easily monitored on the transparent microcarriers made in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Cell Culture in Alginate Hydrogels

This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choi...

متن کامل

Collagen-coated Ba(2+)-alginate microcarriers for the culture of anchorage-dependent mammalian cells.

Several types of microcarriers suitable for large-scale cultivation of mammalian cells are commercially available. However, many of these carriers have disadvantages, e.g., the need for enzymatic digestion for cell harvesting, size limitations and insufficient biocompatibility. These limitations have been overcome by the development of collagen-coated Ba(2+)-alginate microcarriers. Ba(2+)-algin...

متن کامل

Preparation of DEAE–soybean starch microspheres for anchorage-dependent mammal cell culture

The present study outlines the synthesis of a new microcarrier for anchoragedependent animal cell cultures similar to Cytodex 1. The new microcarriers were synthesized from the cross-linking soybean starch microspheres followed by modification with 2-diethylaminoethyl (DEAE). DEAE–soybean starch microspheres were used in anchorage-dependent cell cultures using 3 g/L of the carrier and a 2.0 × 1...

متن کامل

Addition of Fillers to Sodium Alginate Solution Improves Stability and Immobilization Capacity of the Resulting Calcium Alginate Beads

Background: Although advantages of immobilization of cells through entrapment in calcium alginate gel beads have already been demonstrated, nevertheless, instability of the beads and the mass transfer limitations remain as the major challenges.Objective: The objective of the present study was to increase the stability, porosity (reduce mass transfer limit...

متن کامل

Effects of Composition of Iron-Cross-Linked Alginate Hydrogels for Cultivation of Human Dermal Fibroblasts

We investigated the suitability of ferric-ion-cross-linked alginates (Fe-alginate) with various proportions of L-guluronic acid (G) and D-mannuronic acid (M) residues as a culture substrate for human dermal fibroblasts. High-G and high-M Fe-alginate gels showed comparable efficacy in promoting initial cell adhesion and similar protein adsorption capacities, but superior cell proliferation was o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioTechniques

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2002