Wind-driven surficial oxygen transfer and dinitrogen gas emission from treatment lagoons.

نویسندگان

  • K S Ro
  • P G Hunt
  • M E Poach
چکیده

Surficial oxygen transfer plays an important role, when analyzing the complex biochemical and physical processes responsible for ammonia and dinitrogen gas emission in animal waste treatment lagoons. This paper analyzes if currently known nitrogen biochemical pathways can explain the enigmatic dinitrogen gas emissions recently observed from the treatment lagoons, based on the amount of wind-driven oxygen that can be transferred through the air-water interface. The stoichiometric amounts of the maximum dinitrogen gas production potential per unit mass of O(2) transferred were calculated according to three most likely biochemical pathways for ammonia removal in the treatment lagoons-classical nitrification-denitrification, partial nitrification-denitrification, and partial nitrification-Anammox. Partial nitrification-Anammox pathway would produce the largest N(2) emission, followed by partial nitrification-denitrification pathway, then by classical nitrification-denitrification pathway. In order to estimate stoichiometric amount (i.e., maximum) of N(2) emission from these pathways, we assumed that heterotrophic respiration was substantially inhibited due to high levels of free ammonia prevalent in treatment lagoons. Most observed N(2) emission data were below the maximum N(2) emission potentials by the classical nitrification-denitrification pathway. However, one value of observed N(2) emission was much higher than that could be produced by even the partial nitrification-Anammox pathway. This finding suggests yet unknown biological processes and/or non-biological nitrogen processes such as chemodenitrification may also be important in these treatment lagoons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wind - Driven Surficial Oxygen Transfer KYOUNG S

Wind-driven surficial oxygen transfer into stationary water bodies has become increasingly important because the fate of many pollutants in these water bodies is strongly influenced by oxygen mass transfer. There are many existing correlations that can be used for predicting wind-driven surficial oxygen transfer; however, the actual prediction has been difficult because there are large variatio...

متن کامل

Nitrogen cycling through swine production systems: ammonia, dinitrogen, and nitrous oxide emissions.

Ammonia (NH(3)) emissions from animal systems have become a primary concern for all of livestock production. The purpose of this research was to establish the relationship of nitrogen (N) emissions to specific components of swine production systems and to determine accurate NH(3) emission factors appropriate for the regional climate, geography, and production systems. Micrometeorological instru...

متن کامل

Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.

UNLABELLED Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind sp...

متن کامل

Modeling hydrogen sulfide emissions across the gas– liquid interface of an anaerobic swine waste treatment storage system

Hydrogen sulfide (H2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive ‘‘rotten egg’’ smell and is considered a toxic manure gas. In the southeastern United States, anaerobic waste treatment lagoons are widely used to store and treat hog excreta at commercial hog farms. Hydrogen sulfide is produced as manure decomposes anaerobically, resulting from the m...

متن کامل

Pilot-scale concept of real-time wind speed-matching wind tunnel for measurements of gaseous emissions

Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as feedlots, lagoons, pastures and cropland are often criticized for potential bias. The bias is due ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2006