Visual Responses in Mice Lacking Critical Components of All Known Retinal Phototransduction Cascades
نویسندگان
چکیده
The mammalian visual system relies upon light detection by outer-retinal rod/cone photoreceptors and melanopsin-expressing retinal ganglion cells. Gnat1(-/-);Cnga3(-/-);Opn4(-/-) mice lack critical elements of each of these photoreceptive mechanisms via targeted disruption of genes encoding rod α transducin (Gnat1); the cone-specific α3 cyclic nucleotide gated channel subunit (Cnga3); and melanopsin (Opn4). Although assumed blind, we show here that these mice retain sufficiently widespread retinal photoreception to drive a reproducible flash electroretinogram (ERG). The threshold sensitivity of this ERG is similar to that of cone-based responses, however it is lost under light adapted conditions. Its spectral efficiency is consistent with that of rod opsin, but not cone opsins or melanopsin, indicating that it originates with light absorption by the rod pigment. The TKO light response survives intravitreal injection of U73122 (a phospholipase C antagonist), but is inhibited by a missense mutation of cone α transducin (Gnat2(cpfl3)), suggesting Gnat2-dependence. Visual responses in TKO mice extend beyond the retina to encompass the lateral margins of the lateral geniculate nucleus and components of the visual cortex. Our data thus suggest that a Gnat1-independent phototransduction mechanism downstream of rod opsin can support relatively widespread responses in the mammalian visual system. This anomalous rod opsin-based vision should be considered in experiments relying upon Gnat1 knockout to silence rod phototransduction.
منابع مشابه
Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways
Gnat(-/-), Cnga3(-/-), Opn4(-/-) triple knockout (TKO) mice lack essential components of phototransduction signalling pathways present in rods, cones and photosensitive retinal ganglion cells (pRGCs), and are therefore expected to lack all sensitivity to light. However, a number of studies have shown that light responses persist in these mice. In this study we use multielectrode array (MEA) rec...
متن کاملJellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.
Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. H...
متن کاملLight-evoked responses of the mouse retinal pigment epithelium.
In response to light, the retinal pigment epithelium (RPE) generates a series of slow potentials that can be recorded as the c-wave, fast oscillation (FO), and light peak (LP) of the electroretinogram (ERG). As these potentials can be related to specific cellular events, they provide information about RPE function and how that may be altered by disease or experimental manipulation. In the prese...
متن کاملExperimental protocols alter phototransduction: the implications for retinal processing at visual threshold.
Vision in dim light, when photons are scarce, requires reliable signaling of the arrival of single photons. Rod photoreceptors accomplish this task through the use of a G-protein-coupled transduction cascade that amplifies the activity of single active rhodopsin molecules. This process is one of the best understood signaling cascades in biology, yet quantitative measurements of the amplitude an...
متن کاملVisual responses in the lateral geniculate evoked by Cx36-independent rod pathways
Emerging evidence indicates rods can communicate with retinal ganglion cells (RGCs) via pathways that do not involve gap-junctions. Here we investigated the significance of such pathways for central visual responses, using mice lacking a key gap junction protein (Cx36(-/-)) and carrying a mutation that disrupts cone phototransduction (Gnat2(cpfl3)). Electrophysiological recordings spanning the ...
متن کامل