General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

نویسندگان

  • Ning Gao
  • Wei Zhou
  • Xiaocheng Jiang
  • Guosong Hong
  • Tian-Ming Fu
  • Charles M Lieber
چکیده

Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.

Nanoelectronic devices based on nanomaterials such as nanowires, carbon nanotubes, graphene, and other 2D nanomaterials offer extremely large surface-to-volume ratios, high carrier mobility, low power consumption, and high compatibility for integration with modern electronic technologies. These distinct advantages promise great potential for nanoelectronic devices as next generation chemical an...

متن کامل

Specific detection of biomolecules in physiological solutions using graphene transistor biosensors.

Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high-ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a bio...

متن کامل

A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions.

Semiconducting nanowires are promising ultrasensitive, label-free sensors for small molecules, DNA, proteins, and cellular function. Nanowire field-effect transistors (FETs) function by sensing the charge of a bound molecule. However, solutions of physiological ionic strength compromise the detection of specific binding events due to ionic (Debye) screening. A general solution to this limitatio...

متن کامل

Study of Aptamer-Attached Juglone in Different pH Ranges and Ionic Concentrations of Buffers

    Electrochemical aptamer-based sensors attract a lot of interest as useful methods because of their low cost, accuracy, sensitivity, and simplicity. An electro-active redox molecule comprises the main part of the electrochemical-based sensors. Ferrocene is one of the most popular redox molecule used in biosensor fabrication. But, instability of ferrocenium ion in strong nucleophilic reagents...

متن کامل

Piezoresistive Chemical Sensors Based on Functionalized Hydrogels

Thin films of analyte-specific hydrogels were combined with microfabricated piezoresistive pressure transducers to obtain chemomechanical sensors that can serve as selective biochemical sensors for a continuous monitoring of metabolites. The gel swelling pressure has been monitored in simulated physiological solutions by means of the output signal of piezoresistive sensors. The interference by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2015