Randomized LU Decomposition

نویسندگان

  • Gil Shabat
  • Yaniv Shmueli
  • Amir Averbuch
چکیده

Article history: Received 20 February 2015 Received in revised form 17 April 2016 Accepted 29 April 2016 Available online 5 May 2016 Communicated by Thomas Strohmer

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized LU decomposition: An Algorithm for Dictionaries Construction

In recent years, distinctive-dictionary construction has gained importance due to his usefulness in data processing. Usually, one or more dictionaries are constructed from a training data and then they are used to classify signals that did not participate in the training process. A new dictionary construction algorithm is introduced. It is based on a low-rank matrix factorization being achieved...

متن کامل

An Efficient, Sparsity-Preserving, Online Algorithm for Data Approximation

The Singular Value Decomposition (SVD) is a longstanding standard for data approximation because it is optimal in the 2 and Frobenius norms. The SVD, nevertheless, suffers from many setbacks, including computational cost, loss of sparsity in the decomposition, and the inability to be updated easily when new information arrives. Additionally, the SVD provides limited information on data features...

متن کامل

Randomized LU Decomposition Using Sparse Projections

A fast algorithm for the approximation of a low rank LU decomposition is presented. In order to achieve a low complexity, the algorithm uses sparse random projections combined with FFTbased random projections. The asymptotic approximation error of the algorithm is analyzed and a theoretical error bound is presented. Finally, numerical examples illustrate that for a similar approximation error, ...

متن کامل

An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation

Low-rank matrix approximation is a fundamental tool in data analysis for processing large datasets, reducing noise, and finding important signals. In this work, we present a novel truncated LU factorization called Spectrum-Revealing LU (SRLU) for effective low-rank matrix approximation, and develop a fast algorithm to compute an SRLU factorization. We provide both matrix and singular value appr...

متن کامل

Double-blind randomized trial of risperidone versus divalproex in pediatric bipolar disorder: fMRI outcomes

Double-blind randomized trial of risperidone versus divalproex in pediatric bipolar disorder: fMRI outcomes Mani N. Pavuluri*, Alessandra M. Passarotti, Lisa H. Lu, Julie A. Carbray, John A. Sweeney a Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA; b Center for Cognitive Medicine, Department of Psychiatry, University of Illinois at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1310.7202  شماره 

صفحات  -

تاریخ انتشار 2013