Fractal-Based Detection of Microcalcification Clusters in Digital Mammograms
نویسندگان
چکیده
In this paper, a novel method for edge detection of microcalcification clusters in mammogram images is presented using the concept of Fractal Dimension and Hurst co-efficient that enables to locate the microcalcifications in the mammograms. This technique detects the edges accurately than the ones obtained by the conventional Sobel method. Generally, Sobel method detects the edges of the regions/objects in an image using the Fudge factor that assumes its value as 0.5, by default. In this proposed technique, the Fudge factor is suitably replaced with Hurst Co-efficient, which is computed as the difference of Fractal dimension and the topological dimension of a given input image. These two dimensions are image-dependent, and hence the respective Hurst co-efficient too varies with respect to images. Hence, the image-dependent Hurst co-efficient based Sobel method is proved to produce better results than the Fudge factor based Sobel method. The results of the proposed method substantiate the merit of the proposed technique.
منابع مشابه
Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters
Introduction Breast cancer is one of the most common types of cancer among women. Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...
متن کاملA Region Growing Segmentation for Detection of Microcalcification in Digitized Mammograms
This paper presents an approach for detecting microcalcifications in digital mammograms. The microcalcifications appear i n small clusters of few pixels with relatively high intensity compared with their neighboring pixels. The processing scheme used here focuses on detection of microcalcification in a very weak contrast to their background and presents a computerized technique to identify the ...
متن کاملA Multi-scale Approach to the Computer-aided Detection of Microcalcification Clusters in Digital Mammograms
A computer-aided detection (CADe) system for the identification of microcalcification clusters in digital mammograms has been developed. It is mainly based on the application of wavelet transforms for image filtering and neural networks for both the feature extraction and the classification procedures. This CADe system is easily adaptable to different databases. We report and compare the FROC c...
متن کاملDetection of Microcalcification in Digital Mammograms Using One Dimensional Wavelet Transform
Mammography is the most efficient method for breast cancer early detection. Clusters of microcalcifications are the early sign of breast cancer and their detection is the key to improve prognosis of breast cancer. Microcalcifications appear in mammogram image as tiny localized granular points, which is often difficult to detect by naked eye because of their small size. Automatic and accurately ...
متن کاملClassification of Microcalcifications Using Multi-Dimensional Genetic Association Rule Miner
Breast cancer is a most common disease diagnosed in women. The Microcalcification Clusters (MCs) in the mammograms are one of the important early sign. The accurate detection of microcalcifications is a key problem in Computer Aided Detection (CAD). In this paper, we have proposed a novel association rule mining approach for classification of microcalcifications. Initially, the shape features a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.8092 شماره
صفحات -
تاریخ انتشار 2013