Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase.

نویسندگان

  • Y Fu
  • M A Ballicora
  • J F Leykam
  • J Preiss
چکیده

The potato tuber (Solanum tuberosum L.) ADP-glucose pyrophosphorylase activity is activated by a incubation with ADP-glucose and dithiothreitol or by ATP, glucose- 1-phosphate, Ca2+, and dithiothreitol. The activation was accompanied by the appearance of new sulfhydryl groups as determined with 5, 5'-dithiobis(2-nitrobenzoic acid). By analyzing the activated and nonactivated enzymes on SDS-polyacrylamide gel electrophoresis under nonreducing conditions, it was found that an intermolecular disulfide bridge between the small subunits of the potato tuber enzyme was reduced during the activation. Further experiments showed that the activation was mediated via a slow reduction and subsequent rapid conformational change induced by ADP-glucose. The activation process could be reversed by oxidation with 5, 5'-dithiobis(2-nitrobenzoic acid). Incubation with ADP-glucose and dithiothreitol could reactivate the oxidized enzyme. Chemical modification experiments with [14C]iodoacetic acid and 4-vinylpyridine determined that the intermolecular disulfide bridge was located between Cys12 of the small subunits of the potato tuber enzyme. Mutation of Cys12 in the small subunit into either Ala or Ser eliminated the requirement of DTT on the activation and prevented the formation of the intermolecular disulfide of the potato tuber enzyme. The mutants had instantaneous activation rates as the wild-type in the reduced state. A two-step activation model is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unraveling the Activation Mechanism of the Potato Tuber ADP-Glucose Pyrophosphorylase

ADP-glucose pyrophosphorylase regulates the synthesis of glycogen in bacteria and of starch in plants. The enzyme from plants is mainly activated by 3-phosphoglycerate and is a heterotetramer comprising two small and two large subunits. Here, we found that two highly conserved residues are critical for triggering the activation of the potato tuber ADP-glucose pyrophosphorylase, as shown by site...

متن کامل

Crystal structure of potato tuber ADP-glucose pyrophosphorylase.

ADP-glucose pyrophosphorylase catalyzes the first committed and rate-limiting step in starch biosynthesis in plants and glycogen biosynthesis in bacteria. It is the enzymatic site for regulation of storage polysaccharide accumulation in plants and bacteria, being allosterically activated or inhibited by metabolites of energy flux. We report the first atomic resolution structure of ADP-glucose p...

متن کامل

Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin.

The potato tuber (Solanum tuberosum L.) ADP-glucose pyrophosphorylase (ADP-GlcPPase) catalyzes the first committed step in starch biosynthesis. The main type of regulation of this enzyme is allosteric, and its activity is controlled by the ratio of activator, 3-phosphoglycerate to inhibitor, P(i). It was reported (Fu, Y., Ballicora, M. A., Leykam, J. F., and Preiss, J. (1998) J. Biol. Chem. 273...

متن کامل

Crystallization and preliminary X-ray diffraction analysis of the catalytic subunit of ADP-glucose pyrophosphorylase from potato tuber.

ADP-glucose pyrophosphorylase is the key regulatory enzyme in the biosynthesis of starch in plants and glycogen in bacteria. The enzyme from potato tuber is comprised of a regulatory subunit and a catalytic subunit and is present as a heterotetramer (alpha(2)beta(2)). The catalytic subunit from potato tuber (50 kDa) was crystallized in four different forms, two of which are suitable for structu...

متن کامل

Direct appraisal of the potato tuber ADP-glucose pyrophosphorylase large subunit in enzyme function by study of a novel mutant form.

The higher plant ADP-glucose pyrophosphorylase is a heterotetramer consisting of two subunit types, which have evolved at different rates from a common ancestral gene. The potato tuber small subunit (SS) displays both catalytic and regulatory properties, whereas the exact role of the large subunit (LS), which contains substrate and effector binding sites, remains unresolved. We identified a mut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 39  شماره 

صفحات  -

تاریخ انتشار 1998