Regulation of Expression of Citrate Synthase by the Retinoic Acid Receptor-Related Orphan Receptor α (RORα)
نویسندگان
چکیده
The retinoic acid receptor-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS) is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE) in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.
منابع مشابه
Phosphoenolpyruvate Carboxykinase, a Key Enzyme That Controls Blood Glucose, Is a Target of Retinoic Acid Receptor-Related Orphan Receptor α
Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes a committed and rate-limiting step in hepatic gluconeogenesis, and its activity is tightly regulated to maintain blood glucose levels within normal limits. PEPCK activity is primarily regulated through hormonal control of gene transcription. Transcription is additionally regulated via a cAMP response unit, which includes a cAMP response elemen...
متن کاملControl of Gene Expression by the Retinoic Acid-Related Orphan Receptor Alpha in HepG2 Human Hepatoma Cells
Retinoic acid-related Orphan Receptor alpha (RORα; NR1F1) is a widely distributed nuclear receptor involved in several (patho)physiological functions including lipid metabolism, inflammation, angiogenesis, and circadian rhythm. To better understand the role of this nuclear receptor in liver, we aimed at displaying genes controlled by RORα in liver cells by generating HepG2 human hepatoma cells ...
متن کاملMature Purkinje cells require the retinoic acid-related orphan receptor-α (RORα) to maintain climbing fiber mono-innervation and other adult characteristics.
Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs betwe...
متن کاملRetinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity
Retinoic acid-related orphan receptors RORα and RORγ play a regulatory role in lipid/glucose homeostasis and various immune functions, and have been implicated in metabolic syndrome and several inflammatory diseases. RORα-deficient mice are protected against age- and diet-induced obesity, hepatosteatosis, and insulin resistance. The resistance to hepatosteatosis in RORα-deficient mice is relate...
متن کاملRORα inhibits adipocyte-conditioned medium-induced colorectal cancer cell proliferation and migration and chick embryo chorioallantoic membrane angiopoiesis.
Lipid metabolic disturbances are related to many diseases, such as obesity, diabetes, and certain cancers. Notably, lipid metabolic disturbances have been reported to be a risk factor for colorectal cancer. Nuclear receptors act as ligand-dependent transcription regulators and play key roles in the regulation of body lipid metabolism and the development of many cancers. Retinoic acid receptor-r...
متن کامل