Constraint-Selected and Search-Optimized Families of Daubechies Wavelet Filters Computable by Spectral Factorization

نویسنده

  • Carl Taswell
چکیده

A unifying algorithm has been developed to systematize the collection of compact Daubechies wavelets computable by spectral factorization of a symmetric positive polynomial. This collection comprises all classes of real and complex orthogonal and biorthogonal wavelet filters with maximal flatness for their minimal length. The main algorithm incorporates spectral factorization of the Daubechies product filter into analysis and synthesis filters. The spectral factors are found for searchoptimized families by examining a desired criterion over combinatorial subsets of roots indexed by binary codes, and for constraint-selected families by imposing sufficient constraints on the roots without any optimizing search for an extremal property. Daubechies wavelet filter families have been systematized to include those constraint-selected by the principle of separably disjoint roots, and those searchoptimized for time-domain regularity, frequency-domain selectivity, time-frequency uncertainty, and phase nonlinearity. The latter criterion permits construction of the least and most asymmetric and least and most symmetric real and complex orthogonal filters. Biorthogonal symmetric spline and balanced-length filters with linear phase are also computable by these methods. This systematized collection has been developed in the context of a general framework enabling evaluation of the equivalence of constraint-selected and search-optimized families with respect to the filter coefficients and roots and their characteristics. Some of the constraint-selected families have been demonstrated to be equivalent to some of the search-optimized families, thereby obviating the necessity for any search in their computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disjoint Sets of Daubechies Polynomial Roots for Generating Wavelet Filters with Extremal Properties

A new set of wavelet filter families has been added to the systematized collection of Daubechies wavelets. This new set includes complex and real, orthogonal and biorthogonal, least and most disjoint families defined using constraints derived from the principle of separably disjoint root sets in the complex z-domain. All of the new families are considered to be constraint selected without a sea...

متن کامل

Computational Algorithms for Daubechies Least-Asymmetric, Symmetric, and Most-Symmetric Wavelets

Computational algorithms have been developed for generating min-length max-flat FIR filter coefficients for orthogonal and biorthogonal wavelets with varying degrees of asymmetry or symmetry. These algorithms are based on spectral factorization of the Daubechies polynomial with a combinatorial search of root sets selected by a desired optimization criterion. Daubechies filter families were syst...

متن کامل

Least and most disjoint root sets for Daubechies wavelets

A new set of wavelet filter families has been added to the systematized collection of Daubechies wavelets. This new set includes complex and real, orthogonal and biorthogonal, least and most disjoint families defined using constraints derived from the principle of separably disjoint root sets in the complex z-domain. All of the new families are considered to be constraint selected without a sea...

متن کامل

Simplified Framework for Designing Biorthogonal and Orthogonal Wavelets

We initially discuss a new and simple method of parameterization of compactly supported biorthogonal wavelet systems with more than one vanishing moment. To this end we express both primal and dual scaling function filters (low pass) as products of two Laurent polynomials. The first factor ensures required vanishing moments and the second factor is parameterized and adjusted to provide required...

متن کامل

Generalized biorthogonal Daubechies wavelets

We propose a generalization of the Cohen-Daubechies-Feauveau (CDF) and 9/7 biorthogonal wavelet families. This is done within the framework of non-stationary multiresolution analysis, which involves a sequence of embedded approximation spaces generated by scaling functions that are not necessarily dilates of one another. We consider a dual pair of such multiresolutions, where the scaling functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999