The formation of golgi stacks from vesiculated golgi membranes requires two distinct fusion events

نویسندگان

  • Usha Acharya
  • Richard Jacobs
  • Jan-Michael Peters
  • Nicki Watson
  • Marilyn G Farquhar
  • Vivek Malhotra
چکیده

We have reconstituted the fusion and assembly of vesiculated Golgi membranes (VGMs) into functionally active stacks of cisternae. A kinetic analysis of this assembly process revealed that highly dispersed VGMs of 60-90 nm diameter first fuse to form larger vesicles of 200-300 nm diameter that are clustered together. These vesicles then fuse to form tubular elements and short cisternae, which finally assemble into stacks of cisternae. We now provide evidence that the sequential stack formation from VGMs reflects two distinct fusion processes: the first event is N-ethyl-maleimide (NEM)-sensitive factor (NSF) dependent, and the second fusion event requires an NSF-like NEM-sensitive ATPase called p97. Interestingly, while the earliest steps in stack formation share some similarities with events catalyzing fusion of transport vesicles to its target membrane, neither GTP gamma S nor Rab-GDI, inhibitors of vesicular protein traffic, inhibit stack formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstitution of vesiculated Golgi membranes into stacks of cisternae: requirement of NSF in stack formation

We have developed an in vitro system to study the biochemical events in the fusion of ilimaquinone (IQ) induced vesiculated Golgi membranes (VGMs) into stacks of cisternae. The Golgi complex in intact normal rat kidney cells (NRK) is vesiculated by treatment with IQ. The cells are washed to remove the drug and then permeabilized by a rapid freeze-thaw procedure. VGMs of 60 nm average diameter a...

متن کامل

Microtubule independent vesiculation of Golgi membranes and the reassembly of vesicles into Golgi stacks

We have recently shown that ilimaquinone (IQ) causes the breakdown of Golgi membranes into small vesicles (VGMs for vesiculated Golgi membranes) and inhibits vesicular protein transport between successive Golgi cisternae (Takizawa et al., 1993). While other intracellular organelles, intermediate filaments, and actin filaments are not affected, we have found that cytoplasmic microtubules are dep...

متن کامل

Recycling of the endoplasmic reticulum/Golgi intermediate compartment protein ERGIC-53 in the secretory pathway.

semi-intact cells. VGMs appear dispersed throughout the cytoplasm following IQ treatment, while stacks appear as large discrete aggregates by immunofluorescence in intact cells after removal of IQ [12,13]. This assay exploits the ability to distinguish the relative distribution of VGMs and the stacks of Golgi cisternae by immunofluorescence microscopy using Golgi-specific antibodies. Electron m...

متن کامل

The mitotic spindle mediates inheritance of the Golgi ribbon structure

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, ...

متن کامل

Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking

In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 82  شماره 

صفحات  -

تاریخ انتشار 1995