A Welcome Chink in Drug Resistance
نویسنده
چکیده
Given the alarming news about drugresistant super bugs, it’s a relief to know that at least one drug still works even after 50 years of clinical use. Even better, researchers think they finally know why. The drug is amphotericin B and it kills the fungus Candida albicans, a common hospital-acquired infection that can be lifethreatening. In this issue of PLOS Biology, Lindquist and colleagues show that amphotericin B-resistant Candida strains have a hard time surviving on their own, let alone against the defenses of a mammalian host. Amphotericin B binds a cholesterol-like component of fungal cell membranes called ergosterol, thereby punching holes in the membrane and killing the cell. The drug is no longer the go-to treatment for Candida because it can have nasty sideeffects, including fever, tremors, and kidney failure. However, because Candida infections often resist modern antifungals, amphotericin B remains a common treatment today. While extremely rare, a few strains of Candida resist amphotericin B. Previous work linked this resistance to mutations in genes (ERG3 and ERG11) for enzymes required to make ergosterol. In the new study, genomic analysis of two resistant strains from patients confirmed the involvement of ERG3 and ERG11, and also added a third gene (ERG2) for an enzyme in the ergosterol pathway. To find more mutations that cause amphotericin B resistance, Lindquist and colleagues used rapid evolution techniques to make a new Candida strain that survives this drug. In keeping with the resistant strains from patients, this laboratorydeveloped resistant strain has a mutation in yet another gene (ERG6) involved in making ergosterol. To solve the mystery of amphotericin B’s effectiveness after so many years of clinical use, the researchers investigated Hsp90, a protein that that helps other proteins keep their shapes. Previous experiments have suggested critical roles for Hsp90 in the acquisition of novel traits in species ranging from yeast and plants to fruit flies and humans with tumors. Hsp90 inhibitors block many routes by which pathogenic fungi evolve resistance to triazoles and echinocandins, the current drugs of choice for Candida, and likewise overcome resistance in strains that have lost sensitivity to these drugs. The authors found that the same is true for amphotericin B resistance. But to their surprise, Lindquist and colleagues found that Hsp90 inhibitors also devastate the amphotericin B-resistant strains — even in the absence of treatment with the drug. Because Hsp90 helps stressresponse proteins fold properly, the researchers thought stress pathways might be involved. Indeed, while normally activated only during duress, several stress pathways were on all the time in the amphotericin B-resistant strains. These pathways included iron starvation and oxidative stress, both of which are linked to the integrity of fungal membranes. The next step was to confirm that amphotericin B-resistant Candida strains need Hsp90 to stabilize their stressresponse proteins. Several fungal stressresponse proteins are known to depend on Hsp90 and, as expected, inhibiting these proteins kept the amphotericin B-resistant strains from growing. After showing that amphotericin B resistance goes hand-in-hand with constant stress response, the researchers asked if this internal stress rendered mutant Candida strains helpless to external stresses that come from their host, including fever and attacks
منابع مشابه
Exposing a chink in the armor of methicillin-resistant Staphylococcus aureus.
A ntibiotics have provided arguably the greatest benefit to human health among developments of the past century, and so the emergence of widespread antibiotic resistance is now a grave threat to 21stcentury health (1). Among antibioticresistant organisms, methicillin-resistant Staphylococcus aureus (MRSA) emerged early and presents one of the most serious challenges, a situation compounded by t...
متن کاملDrug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs
Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...
متن کاملA STUDY OF MYCOBACTERIUM TUBERCULOSIS DRUG RESISTANCE IN PULMONARY TUBERCULOSIS
Tuberculosis remains a major public health problem in both developing and developed countries. Drug-resistant tuberculosis is an increasing health problem and serious challenge to tuberculosis (TB) control programs. Information about the susceptibility pattern of Mycobacterium tuberculosis isolates against anti-tuberculosis drugs is an important aspect to TB control. The objectives of the s...
متن کاملEvaluation of Gene Mutations Involved in Drug Resistance in Mycobacterium Tuberculosis Strains Derived from Tuberculosis Patients in Mazandaran, Iran, 2013
Drug resistance (especially multiple drug resistance) in Mycobacterium tuberculosis makes global concerns in treatment and control of tuberculosis. Rapid diagnosis of drug resistant strains of the bacteria has vital importance in the prognosis of the disease. The aim of this study was to identify the mutations responsible for drug resistance in Mycobacterium tuberculosis strains derived from pa...
متن کاملPhysiologically-motivated modeling of the voice source in articulatory analysis/synthesis
This paper describes the implementation of a new parametric model of the glottal geometry aimed at improving male and female speech synthesis in the framework of articulatory analysis synthesis. The model represents glottal geometry in terms of inlet and outlet area waveforms and is controlled by parameters that are tightly coupled to physiology, such as vocal fold abduction. It is embedded in ...
متن کامل