Mechanical performance of spider orb webs is tuned for high-speed prey.
نویسندگان
چکیده
Spiders in the Orbiculariae spin orb webs that dissipate the mechanical energy of their flying prey, bringing the insects to rest and retaining them long enough for the spider to attack and subdue their meals. Small prey are easily stopped by webs but provide little energetic gain. While larger prey offer substantial nourishment, they are also challenging to capture and can damage the web if they escape. We therefore hypothesized that spider orb webs exhibit properties that improve their probability of stopping larger insects while minimizing damage when the mechanical energy of those prey exceeds the web's capacity. Large insects are typically both heavier and faster flying than smaller prey, but speed plays a disproportionate role in determining total kinetic energy, so we predicted that orb webs may dissipate energy more effectively under faster impacts, independent of kinetic energy per se. We used high-speed video to visualize the impact of wooden pellets fired into orb webs to simulate prey strikes and tested how capture probability varied as a function of pellet size and speed. Capture probability was virtually nil above speeds of ~3 m s(-1). However, successful captures do not directly measure the maximum possible energy dissipation by orb webs because these events include lower-energy impacts that may not significantly challenge orb web performance. Therefore, we also compared the total kinetic energy removed from projectiles that escaped orb webs by breaking through the silk, asking whether more energy was removed at faster speeds. Over a range of speeds relevant to insect flight, the amount of energy absorbed by orb webs increases with the speed of prey (i.e. the rates at which webs are stretched). Orb webs therefore respond to faster - and hence higher kinetic energy - prey with better performance, suggesting adaptation to capture larger and faster flying insect prey. This speed-dependent toughness of a complex structure suggests the utility of the intrinsic toughness of spider silk and/or features of the macro-design of webs for high-velocity industrial or military applications, such as ballistic energy absorption.
منابع مشابه
Spider orb webs rely on radial threads to absorb prey kinetic energy.
The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank a...
متن کاملMicrosoft Word - 51610-file00
spider orb webs 2 3 Running title: Spider web response to humidity 4 5 Cecilia Boutry * and Todd Alan Blackledge 6 7 University of Akron and Integrated Biosciences Program, University of Akron, Akron, OH 443258 3908, USA 9 *Author for correspondence ([email protected]) 10 11 Abstract 12 Like many biomaterials, spider silk responds to water through softening and swelling. Major ampullate 13 s...
متن کاملBehavioural and biomaterial coevolution in spider orb webs.
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials--silks--are arranged in a complex design resulting from stereotypical behavioural patt...
متن کاملWet webs work better: humidity, supercontraction and the performance of spider orb webs.
Like many biomaterials, spider silk responds to water through softening and swelling. Major ampullate silk, the main structural element of most prey capture webs, also shrinks dramatically if unrestrained or develops high tension if restrained, a phenomenon called 'supercontraction'. While supercontraction has been investigated for over 30 years, its consequences for web performance remain cont...
متن کاملThe secondary frame in spider orb webs: the detail that makes the difference
Spider orb webs are multifunctional structures, the main function of which is to dissipate the kinetic energy of the impacting prey, while minimizing structural damage. There is no single explanation for their remarkable strength and ductility. However, it is clear that topology is decisive in the structural performance upon impact, and the arrangement of the different silk threads in the web m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 18 شماره
صفحات -
تاریخ انتشار 2013