Computation of nonparametric convex hazard estimators via profile methods.

نویسندگان

  • Hanna K Jankowski
  • Jon A Wellner
چکیده

This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Nonparametric Convex Hazard Estimators via Profile Methods Technical Report 542 Department of Statistics, University of Washington

Abstract. In this paper we develop an algorithm to find the maximum likelihood estimator of a convex hazard function. The maximization is done in two steps. First, we use the support reduction algorithm of [GJW1] to find the profile likelihood over a constrained space. We next show that (−1) times the profile likelihood is bathtub-shaped in the parameters, and use a bisection algorithm to find ...

متن کامل

Partially Linear Hazard Regression with Varying-coefficients for Multivariate Survival Data

This paper studies estimation of partially linear hazard regression models with varying coefficients for multivariate survival data. A profile pseudo-partial likelihood estimation method is proposed. The estimation of the parameters of the linear part is accomplished via maximization of the profile pseudo-partial likelihood, while the varying-coefficient functions are considered as nuisance par...

متن کامل

Interval Censored Survival Data A Review of Recent Progress

We review estimation in interval censoring models including nonparametric esti mation of a distribution function and estimation of regression models In the non parametric setting we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators In the regression setting we focus on the proportional hazards the proportional odds and the accelerated...

متن کامل

Interval Censored Survival Data : A Review of Recent

We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the non-parametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accele...

متن کامل

Parametrically assisted nonparametric estimation of a density in the deconvolution problem

Nonparametric estimation of a density from contaminated data is a difficult problem, for which convergence rates are notoriously slow. We introduce parametrically assisted nonparametric estimators which can dramatically improve on performance of standard nonparametric estimators when the assumed model is close to the true density, without degrading much the quality of purely nonparametric estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nonparametric statistics

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2009