Dual-tagged amyloid-b precursor protein reveals distinct transport pathways of its N- and C-terminal fragments
نویسندگان
چکیده
The amyloid-bprecursor protein (APP), a type I transmembrane protein genetically associated with Alzheimer’s disease, has a complex biology that includes proteolytic processing into potentially toxic fragments, extensive trafficking and multiple, yet poorly-defined functions. We recently proposed that a significant fraction of APP is proteolytically cleaved in the neuronal soma into Nand C-terminal fragments (NTFs and CTFs), which then target independently of each other to separate destinations in the cell. Here, we prove this concept with live imaging and immunolocalization of two dual, Nand C-termini-tagged APP constructs: CFP-APP-YFP [containing the fluorescent tags, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP)] and FLAG-APP-Myc. When expressed at low levels in neuronal cells, these constructs are processed into differently tagged NTFs and CTFs that reveal distinct distributions and characteristics of transport. Like the endogenous Nand C-terminal epitopes of APP, the FLAG-tagged NTFs are present in trains of vesicles and tubules that localize to short filaments, which often immunostain for acetylated tubulin, whereas the Myc-tagged CTFs are detected on randomly distributedvesicle-likestructures.Theexperimental treatments thatselectivelydestabilize theacetylatedmicrotubules abrogate the distribution of NTFs along filaments, without altering the random distribution of CTFs. These results indicate that the NTFs and CTFs are recruited to distinct transport pathways and reach separate destinations in neurons, where they likely accomplish functions independent of the parental, full-length APP. Theyalsopoint toacompartmentassociatedwithacetylatedmicrotubules in theneuronalsoma—not theneurite terminals—as a major site of APP cleavage, and segregation of NTFs from CTFs.
منابع مشابه
Dual-tagged amyloid-β precursor protein reveals distinct transport pathways of its N- and C-terminal fragments.
The amyloid-β precursor protein (APP), a type I transmembrane protein genetically associated with Alzheimer's disease, has a complex biology that includes proteolytic processing into potentially toxic fragments, extensive trafficking and multiple, yet poorly-defined functions. We recently proposed that a significant fraction of APP is proteolytically cleaved in the neuronal soma into N- and C-t...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملThe cleavage products of amyloid-beta precursor protein are sorted to distinct carrier vesicles that are independently transported within neurites.
The amyloid-beta (Abeta) precursor protein (APP), a transmembrane protein that undergoes proteolytic cleavage into defined fragments, has been implicated in axonal transport. The proposed role of APP as a vesicle receptor for the microtubule motor kinesin-1 has relevance for the pathogenesis of Alzheimer's disease. Nevertheless, this function, which relies on the transport to the cell periphery...
متن کاملLoss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Aβ production
Disruption to axonal transport is an early pathological feature in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo in Alzheimer's disease since perturbation of its transport increases APP processing and production of amyloid-β peptide (Aβ) that is deposited in the brains of Alzheimer's disease patients. APP is transported anterogradely through axons on k...
متن کامل