Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA
نویسندگان
چکیده
A new technique for ascertaining the thermodynamic cloud phase from high-spectral-resolution ground-based infrared measurements made by the Atmospheric Emitted Radiance Interferometer (AERI) is presented. This technique takes advantage of the differences in the index of refraction of ice and water between 11 and 19 mm. The differences in the refractive indices translate into differences in cloud emissivity at the various wavelengths, which are used to determine whether clouds contain only ice particles or only water particles, or are mixed phase. Simulations demonstrate that the algorithm is able to ascertain correctly the cloud phase under most conditions, with the exceptions occurring when the optical depth of the cloud is dominated by liquid water (.70%). Several examples from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment are presented, to demonstrate the capability of the algorithm, in which a collocated polarization-sensitive lidar is used to provide insight to the true thermodynamic phase of the clouds. Statistical comparisons with this lidar during the SHEBA campaign demonstrate that the algorithm identifies the cloud as either an ice or mixed-phase cloud approximately 80% of time when a single-layer cloud with an average depolarization above 10% exists that is not opaque to the AERI. For single-layer clouds having depolarization of less than 10%, the algorithm identifies the cloud as a liquid water cloud over 50% of the time. This algorithm was applied to 7 months of data collected during SHEBA, and monthly statistics on the frequency of ice, water, and mixed-phase clouds are presented.
منابع مشابه
Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations
A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10 μm t...
متن کاملStudying Altocumulus with Ice Virga Using Ground-Based Active and Passive Remote Sensors
Mixed-phase clouds are still poorly understood, though studies have indicated that their parameterization in general circulation models is critical for climate studies. Most of the knowledge of mixed-phase clouds has been gained from in situ measurements, but reliable remote sensing algorithms to study mixed-phase clouds extensively are lacking. A combined active and passive remote sensing appr...
متن کاملInformation Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)
The Atmospheric Emitted Radiance Interferometer (AERI) observes spectrally resolved downwelling radiance emitted by the atmosphere in the infrared portion of the electromagnetic spectrum. Profiles of temperature and water vapor, and cloud liquid water path and effective radius for a single liquid cloud layer, are retrieved using an optimal estimation–based physical retrieval algorithm from AERI...
متن کاملA New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds
The new double-moment microphysics scheme described in Part I of this paper is implemented into a single-column model to simulate clouds and radiation observed during the period 1 April–15 May 1998 of the Surface Heat Budget of the Arctic (SHEBA) and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) field projects. Mean predi...
متن کاملA comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp
Cloud and boundary layer variables from the European Centre for MediumRange Weather Forecasts (ECMWF) forecast model were compared with measurements made from surface instruments and from upward looking 8 mm wavelength radar and lidar at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp during November and December of 1997. The precipitation accumulation, near-surface winds, and surf...
متن کامل