Kinetic Analysis of Secretory Protein Traffic and Characterization of Golgi to Plasma Membrane Transport Intermediates in Living Cells

نویسندگان

  • Koret Hirschberg
  • Chad M. Miller
  • Jan Ellenberg
  • John F. Presley
  • Eric D. Siggia
  • Robert D. Phair
  • Jennifer Lippincott-Schwartz
چکیده

Quantitative time-lapse imaging data of single cells expressing the transmembrane protein, vesicular stomatitis virus ts045 G protein fused to green fluorescent protein (VSVG-GFP), were used for kinetic modeling of protein traffic through the various compartments of the secretory pathway. A series of first order rate laws was sufficient to accurately describe VSVG-GFP transport, and provided compartment residence times and rate constants for transport into and out of the Golgi complex and delivery to the plasma membrane. For ER to Golgi transport the mean rate constant (i.e., the fraction of VSVG-GFP moved per unit of time) was 2.8% per min, for Golgi to plasma membrane transport it was 3.0% per min, and for transport from the plasma membrane to a degradative site it was 0.25% per min. Because these rate constants did not change as the concentration of VSVG-GFP in different compartments went from high (early in the experiment) to low (late in the experiment), secretory transport machinery was never saturated during the experiments. The processes of budding, translocation, and fusion of post-Golgi transport intermediates carrying VSVG- GFP to the plasma membrane were also analyzed using quantitative imaging techniques. Large pleiomorphic tubular structures, rather than small vesicles, were found to be the primary vehicles for Golgi to plasma membrane transport of VSVG-GFP. These structures budded as entire domains from the Golgi complex and underwent dynamic shape changes as they moved along microtubule tracks to the cell periphery. They carried up to 10,000 VSVG-GFP molecules and had a mean life time in COS cells of 3.8 min. In addition, they fused with the plasma membrane without intersecting other membrane transport pathways in the cell. These properties suggest that the post-Golgi intermediates represent a unique transport organelle for conveying large quantities of protein cargo from the Golgi complex directly to the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of microtubules in transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells.

The organization of intracellular compartments and the transfer of components between them are central to the correct functioning of mammalian cells. Proteins and lipids are transferred between compartments by the formation, movement and subsequent specific fusion of transport intermediates. These vesicles and membrane clusters must be coupled to the cytoskeleton and to motor proteins that driv...

متن کامل

A positive signal prevents secretory membrane cargo from recycling between the Golgi and the ER.

The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward-bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi-to-plasma membrane transport was blocked, vesicular sto...

متن کامل

Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging

Although epithelial cells are known to exhibit a polarized distribution of membrane components, the pathways responsible for delivering membrane proteins to their appropriate domains remain unclear. Using an optimized approach to three-dimensional live cell imaging, we have visualized the transport of newly synthesized apical and basolateral membrane proteins in fully polarized filter-grown Mad...

متن کامل

Golgi Tubule Traffic and the Effects of Brefeldin A Visualized in Living Cells

The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein-Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry membrane outward along microtubules af...

متن کامل

Imaging of membrane systems and membrane traffic in living cells.

Eukaryotic cells are composed of an intricate system of internal membranes that are organized into different compartments--including the endoplasmic reticulum (ER), the nuclear envelope, the Golgi complex (GC), lysosomes, endosomes, caveolae, mitochondria, and peroxisomes--that perform specialized tasks within the cell. The localization and dynamics of intracellular compartments are now being s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 143  شماره 

صفحات  -

تاریخ انتشار 1998