Spectra of Algebraic Fields and Subfields

نویسندگان

  • Andrey Frolov
  • Iskander Sh. Kalimullin
  • Russell G. Miller
چکیده

An algebraic field extension of Q or Z/(p) may be regarded either as a structure in its own right, or as a subfield of its algebraic closure F (either Q or Z/(p)). We consider the Turing degree spectrum of F in both cases, as a structure and as a relation on F , and characterize the sets of Turing degrees that are realized as such spectra. The results show a connection between enumerability in the structure F and computability when F is seen as a subfield of F .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Computation of Unirational Fields

One of the main contributions which Volker Weispfenning made to mathematics is related to Gröbner bases theory. In this paper we present an algorithm for computing all algebraic intermediate subfields in a separably generated unirational field extension (which in particular includes the zero characteristic case). One of the main tools is Gröbner bases theory. Our algorithm also requires computi...

متن کامل

Computation of unirational fields (extended abstract)

In this paper we present an algorithm for computing all algebraic intermediate subfields in a separably generated unirational field extension (which in particular includes the zero characteristic case). One of the main tools is Gröbner bases theory, see [BW93]. Our algorithm also requires computing computing primitive elements and factoring over algebraic extensions. Moreover, the method can be...

متن کامل

Degree Spectra of Real Closed Fields

Several researchers have recently established that for every Turing degree c, the real closed field of all c-computable real numbers has spectrum {d : d′ ≥ c′′}. We investigate the spectra of real closed fields further, focusing first on subfields of the field R0 of computable real numbers, then on archimedean real closed fields more generally, and finally on nonarchimedean real closed fields. ...

متن کامل

Ramification Theory for Higher Dimensional Local Fields

The paper contains a construction of ramification theory for higher dimensional local fields K provided with additional structure given by an increasing sequence of their “subfields of i-dimensional constants”, where 0 i n and n is the dimension of K. It is also announced that a local analogue of the Grothendieck Conjecture still holds: all automorphisms of the absolute Galois group of K, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009