The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.

نویسندگان

  • Rebecca F Alford
  • Andrew Leaver-Fay
  • Jeliazko R Jeliazkov
  • Matthew J O'Meara
  • Frank P DiMaio
  • Hahnbeom Park
  • Maxim V Shapovalov
  • P Douglas Renfrew
  • Vikram K Mulligan
  • Kalli Kappel
  • Jason W Labonte
  • Michael S Pacella
  • Richard Bonneau
  • Philip Bradley
  • Roland L Dunbrack
  • Rhiju Das
  • David Baker
  • Brian Kuhlman
  • Tanja Kortemme
  • Jeffrey J Gray
چکیده

Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions and engineering challenges ranging from interpretation of low-resolution structural data to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta's success is the energy function: a model parametrized from small-molecule and X-ray crystal structure data used to approximate the energy associated with each biomolecule conformation. This paper describes the mathematical models and physical concepts that underlie the latest Rosetta energy function, called the Rosetta Energy Function 2015 (REF15). Applying these concepts, we explain how to use Rosetta energies to identify and analyze the features of biomolecular models. Finally, we discuss the latest advances in the energy function that extend its capabilities from soluble proteins to also include membrane proteins, peptides containing noncanonical amino acids, small molecules, carbohydrates, nucleic acids, and other macromolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macromolecular modeling with rosetta.

Advances over the past few years have begun to enable prediction and design of macromolecular structures at near-atomic accuracy. Progress has stemmed from the development of reasonably accurate and efficiently computed all-atom potential functions as well as effective conformational sampling strategies appropriate for searching a highly rugged energy landscape, both driven by feedback from str...

متن کامل

SHARPEN - Systematic Hierarchical Algorithms for Rotamers and Proteins on an Extended Network

Algorithms for discrete optimization of proteins play a central role in recent advances in protein structure prediction and design. We wish to improve the resources available for computational biologists to rapidly prototype such algorithms and to easily scale these algorithms to many processors. To that end, we describe the implementation and use of two new open source resources, citing potent...

متن کامل

Scientific benchmarks for guiding macromolecular energy function improvement.

Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to the improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low-energy structures gen...

متن کامل

Four Small Puzzles That Rosetta Doesn't Solve

A complete macromolecule modeling package must be able to solve the simplest structure prediction problems. Despite recent successes in high resolution structure modeling and design, the Rosetta software suite fares poorly on small protein and RNA puzzles, some as small as four residues. To illustrate these problems, this manuscript presents Rosetta results for four well-defined test cases: the...

متن کامل

Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home.

We describe predictions made using the Rosetta structure prediction methodology for both template-based modeling and free modeling categories in the Seventh Critical Assessment of Techniques for Protein Structure Prediction. For the first time, aggressive sampling and all-atom refinement could be carried out for the majority of targets, an advance enabled by the Rosetta@home distributed computi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2017