Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1–xPbI3 Hybrid Perovskites from Solid-State NMR
نویسندگان
چکیده
Hybrid (organic-inorganic) multication lead halide perovskites hold promise for a new generation of easily processable solar cells. Best performing compositions to date are multiple-cation solid alloys of formamidinium (FA), methylammonium (MA), cesium, and rubidium lead halides which provide power conversion efficiencies up to around 22%. Here, we elucidate the atomic-level nature of Cs and Rb incorporation into the perovskite lattice of FA-based materials. We use 133Cs, 87Rb, 39K, 13C, and 14N solid-state MAS NMR to probe microscopic composition of Cs-, Rb-, K-, MA-, and FA-containing phases in double-, triple-, and quadruple-cation lead halides in bulk and in a thin film. Contrary to previous reports, we have found no proof of Rb or K incorporation into the 3D perovskite lattice in these systems. We also show that the structure of bulk mechanochemical perovskites bears close resemblance to that of thin films, making them a good benchmark for structural studies. These findings provide fundamental understanding of previously reported excellent photovoltaic parameters in these systems and their superior stability.
منابع مشابه
Cation-Alloying as a Pathway to Reproducible Solution-Based Preparation of Efficient Metal Halide Perovskites Solar Cells with Increased Stability
With a certain amount of serendipity, research on dye-sensitized solar cells led to the discovery of metal halide perovskite semiconductors as a solar energy conversion material1,2 that has inspired world-wide research activities leading to efficiency increases from about 10% in 20123,4 to now 22%.5–8 Apart from their use as a single junction solar cell technology, metal halide perovskites can ...
متن کاملLight-Induced Phase Segregation in Halide- Perovskite Absorbers
In the few short years since the inception of single-junction perovskite solar cells, their efficiencies have skyrocketed. Perovskite absorbers have at least as much to offer tandem solar cells as they do for single-junction cells due in large part to their tunable band gaps. However, modifying the perovskite band structure via halide substitution, the method that has been most effective at tun...
متن کاملA multinuclear solid-state NMR study of alkali metal ions in tetraphenylborate salts, M[BPh4] (M = Na, K, Rb and Cs): what is the NMR signature of cation-pi interactions?
We report a multinuclear solid-state ( (23)Na, (39)K, (87)Rb, (133)Cs) NMR study of tetraphenylborate salts, M[BPh 4] (M = Na, K, Rb, Cs). These compounds are isostructural in the solid state with the alkali metal ion surrounded by four phenyl groups resulting in strong cation-pi interactions. From analyses of solid-state NMR spectra obtained under stationary and magic-angle spinning (MAS) cond...
متن کاملA solid-state 23Na NMR study of monovalent cation binding to double-stranded DNA at low relative humidity.
We report a solid-state (23)Na NMR study of monovalent cation (Li(+), Na(+), K(+), Rb(+), Cs(+) and NH(4) (+)) binding to double-stranded calf thymus DNA (CT DNA) at low relative humidity, ca 0-10%. Results from (23)Na--(31)P rotational echo double resonance (REDOR) NMR experiments firmly establish that, at low relative humidity, monovalent cations are directly bound to the phosphate group of C...
متن کاملMultinuclear NMR as a tool for studying local order and dynamics in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites.
We report on 207Pb, 79Br, 14N, 1H, 13C and 2H NMR experiments for studying the local order and dynamics in hybrid perovskite lattices. 207Pb NMR experiments conducted at room temperature on a series of MAPbX3 compounds (MA = CH3NH3+; X = Cl, Br and I) showed that the isotropic 207Pb NMR shift is strongly dependent on the nature of the halogen ions. Therefore 207Pb NMR appears to be a very promi...
متن کامل