MULTI-INSTANCE LEARNING WITH ANY HYPOTHESIS CLASS Multi-Instance Learning with Any Hypothesis Class
نویسندگان
چکیده
In the supervised learning setting termed Multiple-Instance Learning (MIL), the examples are bags of instances, and the bag label is a function of the labels of its instances. Typically, this function is the Boolean OR. The learner observes a sample of bags and the bag labels, but not the instance labels that determine the bag labels. The learner is then required to emit a classification rule for bags based on the sample. MIL has numerous applications, and many heuristic algorithms have been used successfully on this problem, each adapted to specific settings or applications. In this work we provide a unified theoretical analysis for MIL, which holds for any underlying hypothesis class, regardless of a specific application or problem domain. We show that the sample complexity of MIL is only poly-logarithmically dependent on the size of the bag, for any underlying hypothesis class. In addition, we introduce a new PAC-learning algorithm for MIL, which employs a regular supervised learning algorithm as an oracle. We prove that efficient PAC-learning for MIL can be generated from any efficient non-MIL supervised learning algorithm that handles one-sided error. The computational complexity of the resulting algorithm is only polynomially dependent on the bag size.
منابع مشابه
Learnability of Multi - Instance Multi - Label Learning
Multi-Instance Multi-Label learning (MIML) is a new machine learning framework where one data object is described by multiple instances and associated with multiple class labels. During the past few years, many MIML algorithms have been developed and many applications have been described. However, there lacks theoretical exploration to the learnability of MIML. In this paper, through proving a ...
متن کاملMulti-instance learning with any hypothesis class
In the supervised learning setting termed Multiple-Instance Learning (MIL), the examples are bags of instances, and the bag label is a function of the labels of its instances. Typically, this function is the Boolean OR. The learner observes a sample of bags and the bag labels, but not the instance labels that determine the bag labels. The learner is then required to emit a classification rule f...
متن کاملFully Convolutional Multi-Class Multiple Instance Learning
Multiple instance learning (MIL) can reduce the need for costly annotation in tasks such as semantic segmentation by weakening the required degree of supervision. We propose a novel MIL formulation of multi-class semantic segmentation learning by a fully convolutional network. In this setting, we seek to learn a semantic segmentation model from just weak image-level labels. The model is trained...
متن کاملMulti-Label Learning by Instance Differentiation
Multi-label learning deals with ambiguous examples each may belong to several concept classes simultaneously. In this learning framework, the inherent ambiguity of each example is explicitly expressed in the output space by being associated with multiple class labels. While on the other hand, its ambiguity is only implicitly encoded in the input space by being represented by only a single insta...
متن کاملThe effect of flipped class approach on math learning of students in multi-grade classes
The purpose of this study was to investigate the effect of the flipped class approach on math learning of students in multi-grade classes. This research is a quasi-experimental design of pre-test-post-test-follow-up with a control group. After studying and designing educational work, 36 elementary school students studying in two multi-level schools in the academic year 1300-1400 in Kohgiluyeh a...
متن کامل