Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q

نویسندگان

  • John Cremona
  • Samir Siksek
چکیده

Let E be an elliptic curve over the rationals. A crucial step in determining a Mordell-Weil basis for E is to exhibit some positive lower bound λ > 0 for the canonical height ĥ on non-torsion points. We give a new method for determining such a lower bound, which does not involve any searching for points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing a lower bound for the canonical height on elliptic curves over number fields

Computing a lower bound for the canonical height is a crucial step in determining a Mordell–Weil basis for elliptic curves. This paper presents an algorithm for computing such a lower bound for elliptic curves over number fields without searching for points. The algorithm is illustrated by some examples.

متن کامل

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Totally Real Number Fields

Computing a lower bound for the canonical height is a crucial step in determining a Mordell–Weil basis of an elliptic curve. This paper presents a new algorithm for computing such lower bound, which can be applied to any elliptic curves over totally real number fields. The algorithm is illustrated via some examples.

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Computing canonical heights with little (or no) factorization

Let E/Q be an elliptic curve with discriminant ∆, and let P ∈ E(Q). The standard method for computing the canonical height ĥ(P ) is as a sum of local heights ĥ(P ) = λ̂∞(P ) + ∑ p λ̂p(P ). There are well-known series for computing the archimedean height λ̂∞(P ), and the non-archimedean heights λ̂p(P ) are easily computed as soon as all prime factors of ∆ have been determined. However, for curves wi...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006