The Assembly History of the Stellar Mass in Galaxies: from the Young to the Old Universe
نویسنده
چکیده
We present a detailed analysis of the Galaxy Stellar Mass Function (GSMF) of galaxies up to z = 2.5 as obtained from the VIMOS VLT Deep Survey (VVDS). Our survey offers the possibility to investigate it using two different samples: (1) an optical (I-selected 17.5 < IAB < 24) main spectroscopic sample of about 6500 galaxies over 1750 arcmin 2 and (2) a near-IR (K-selected KAB < 22.34 & KAB < 22.84) sample of about 10200 galaxies, with photometric redshifts accurately calibrated on the VVDS spectroscopic sample, over 610 arcmin. We apply and compare two different methods to estimate the stellar mass Mstars from broad-band photometry based on different assumptions on the galaxy star-formation history. We find that the accuracy of the photometric stellar mass is overall satisfactory, and show that the addition of secondary bursts to a continuous star formation history produces systematically higher (up to 40%) stellar masses. We derive the cosmic evolution of the GSMF, the galaxy number density and the stellar mass density in different mass ranges. At low redshift (z ≃ 0.2) we find a substantial population of low-mass galaxies (< 10M⊙) composed by faint blue galaxies (MI −MK ≃ 0.3). In general the stellar mass function evolves slowly up to z ∼ 0.9 and more significantly above this redshift, in particular for low mass systems. Conversely, a massive population is present up to z = 2.5 and have extremely red colours (MI−MK ≃ 0.7−0.8). We find a decline with redshift of the overall number density of galaxies for all masses (59± 5% for Mstars > 10 M⊙ at z = 1), and a mild mass-dependent average evolution (‘mass-downsizing’). In particular our data are consistent with mild/negligible (< 30%) evolution up to z ∼ 0.7 for massive galaxies (> 6× 10M⊙). For less massive systems the no-evolution scenario is excluded. Specifically, a large fraction (≥ 50%) of massive galaxies have been already assembled and converted most of their gas into stars at z ∼ 1, ruling out the ‘dry mergers’ as the major mechanism of their assembly history below z ≃ 1. This fraction decreases to ∼ 33% at z ∼ 2. Low-mass systems have decreased continuously in number density (by a factor up to 4.1 ± 0.9) from the present age to z = 2, consistently with a prolonged mass assembly also at z < 1. The evolution of the stellar mass density is relatively slow with redshift, with a decrease of a factor 2.3 ± 0.1 at z = 1 and about 4.5± 0.3 at z = 2.5.
منابع مشابه
Stellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کاملPulsating red giant and supergiant stars in the Local Group dwarf galaxy Andromeda I
We have conducted an optical long-term monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify the long period variable (LPV) stars. LPV stars vary on timescales of months to years, and reach the largest amplitudes of their brightness variations at optical wavelengths, due to the changing temperature. They trace stellar populati...
متن کاملEvaluation of New MOND Interpolating Function with Rotation Curves of Galaxies
The rotation curves of a sample of 46 low- and high-surface brightness galaxies are considered in the context of Milgrom's modi_ed dynamics (MOND) to test a new interpolating function proposed by Zhao et al. (2010) [1] and compare with the results of simple interpolating function. The predicted rotation curves are calculated from the total baryonic matter based on the B-band surface photometry,...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملThe Complete Star Formation History of the Universe
The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how structure in the Universe forms and evolves. A picture has built up over recent years, piece-by-piece, by observing young stars in distant galaxies at different times in the past[1]-[12]. These studies indicated that the stellar birthrate peaked some 8 ...
متن کامل