Local anesthetics as effectors of allosteric gating. Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels.
نویسندگان
چکیده
Time- and voltage-dependent local anesthetic effects on sodium (Na) currents are generally interpreted using modulated receptor models that require formation of drug-associated nonconducting states with high affinity for the inactivated channel. The availability of inactivation-deficient Na channels has enabled us to test this traditional view of the drug-channel interaction. Rat skeletal muscle Na channels were mutated in the III-IV linker to disable fast inactivation (F1304Q: FQ). Lidocaine accelerated the decay of whole-cell FQ currents in Xenopus oocytes, reestablishing the wild-type phenotype; peak inward current at -20 mV was blocked with an IC50 of 513 microM, while plateau current was blocked with an IC50 of only 74 microM (P < 0.005 vs. peak). In single-channel experiments, mean open time was unaltered and unitary current was only reduced at higher drug concentrations, suggesting that open-channel block does not explain the effect of lidocaine on FQ plateau current. We considered a simple model in which lidocaine reduced the free energy for inactivation, causing altered coupling between activation and inactivation. This model readily simulated macroscopic Na current kinetics over a range of lidocaine concentrations. Traditional modulated receptor models which did not modify coupling between gating processes could not reproduce the effects of lidocaine with rate constants constrained by single-channel data. Our results support a reinterpretation of local anesthetic action whereby lidocaine functions as an allosteric effector to enhance Na channel inactivation.
منابع مشابه
The Position of the Fast-Inactivation Gate during Lidocaine Block of Voltage-gated Na 1 Channels
Lidocaine produces voltageand use-dependent inhibition of voltage-gated Na 1 channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na 1 channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fa...
متن کاملEffects of local anesthetics on Na+ channels containing the equine hyperkalemic periodic paralysis mutation.
We examined the ability of local anesthetics to correct altered inactivation properties of rat skeletal muscle Na+channels containing the equine hyperkalemic periodic paralysis (eqHPP) mutation when expressed in Xenopusoocytes. Increased time constants of current decay in eqHPP channels compared with wild-type channels were restored by 1 mM benzocaine but were not altered by lidocaine or mexile...
متن کاملAltered gating and local anesthetic block mediated by residues in the I-S6 and II-S6 transmembrane segments of voltage-dependent Na+ channels.
The cytoplasmic side of the voltage-dependent Na+ channel pore is putatively formed by the S6 segments of domains I to IV. The role of amino acid residues of I-S6 and II-S6 in channel gating and local anesthetic (LA) block was investigated using the cysteine scanning mutagenesis of the rat skeletal muscle Na+ channel (Nav1.4). G428C uniquely reduced sensitivity to rested state or first-pulse bl...
متن کاملBlock of Inactivation-deficient Na+ Channels by Local Anesthetics in Stably Transfected Mammalian Cells
According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine and lidocaine bind preferentially to fast-inactivated Na(+) channels with higher affinities. However, an alternative view suggests that activation of Na(+) channels plays a crucial role in promoting high-affinity LA binding and that fast inactivation per se is not a prerequisite for LA preferentia...
متن کاملLocal anesthetic anchoring to cardiac sodium channels. Implications into tissue-selective drug targeting.
Local anesthetics inhibit Na+ channels in a variety of tissues, leading to potentially serious side effects when used clinically. We have created a series of novel local anesthetics by connecting benzocaine (BZ) to the sulfhydryl-reactive group methanethiosulfonate (MTS) via variable-length polyethylether linkers (L) (MTS-LX-BZ [X represents 0, 3, 6, or 9]). The application of MTS-LX-BZ agents ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 98 12 شماره
صفحات -
تاریخ انتشار 1996