Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement.

نویسندگان

  • Jun Liu
  • Sizhu Wu
  • Liqun Zhang
  • Wenchuan Wang
  • Dapeng Cao
چکیده

By employing an idealized model of a polymer network and filler, we have investigated the stress-strain behavior by tuning the filler loading and polymer-filler interaction in a broad range. The simulated results indicate that there actually exists an optimal filler volume fraction (between 23% and 32%) for elastomer reinforcement with attractive polymer-filler interaction. To realize this reinforcement, the rubber-filler interaction should be slightly stronger than the rubber-rubber interaction, while excessive chemical couplings are harmful to mechanical properties. Meanwhile, our simulated results qualitatively reproduce the experimental data of Bokobza. By introducing enough chemical coupling between the rubber and the filler, an upturn in the modulus at large deformation is observed in the Mooney-Rivlin plot, attributed to the limited chain extensibility at large deformation. Particularly, the filler dispersion state in the polymer networks is also characterized in detail. It is the first demonstration via simulation that the reinforcement mechanism stems from the nanoparticle-induced chain alignment and orientation, as well as the limited extensibility of chain bridges formed between neighboring nanoparticles at large deformation. The former is influenced by the filler amount, filler size and filler-rubber interaction, and the latter becomes more obvious by strengthening the physical and chemical interactions between the rubber and the filler. Remarkably, the reason for no obvious reinforcing effect in filled glassy or semi-crystalline matrices is also demonstrated. It is expected that this preliminary study of nanoparticle-induced mechanical reinforcement will provide a solid basis for further insightful investigation of polymer reinforcement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study

Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...

متن کامل

Mechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams

Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...

متن کامل

Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells

This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.

متن کامل

Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation.

A coarse-grained molecular dynamics simulation was used to investigate the stress-strain behavior of nanorod-filled polymer composites. The effects of the interfacial interaction, aspect ratio of fillers, filler functionalization, chemical couplings between the polymer and the filler and the filler loading on the mechanical reinforcement were explored. The results indicate that there exists an ...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2011