Cysteine 904 Is Required for Maximal Insulin Degrading Enzyme Activity and Polyanion Activation
نویسندگان
چکیده
Cysteine residues in insulin degrading enzyme have been reported as non-critical for its activity. We found that converting the twelve cysteine residues in rat insulin degrading enzyme (IDE) to serines resulted in a cysteine-free form of the enzyme with reduced activity and decreased activation by polyanions. Mutation of each cysteine residue individually revealed cysteine 904 as the key residue required for maximal activity and polyanion activation, although other cysteines affect polyanion binding to a lesser extent. Based on the structure of IDE, Asn 575 was identified as a potential hydrogen bond partner for Cys904 and mutation of this residue also reduced activity and decreased polyanion activation. The oligomerization state of IDE did not correlate with its activity, with the dimer being the predominant form in all the samples examined. These data suggest that there are several conformational states of the dimer that affect activity and polyanion activation.
منابع مشابه
An Extended Polyanion Activation Surface in Insulin Degrading Enzyme
Insulin degrading enzyme (IDE) is believed to be the major enzyme that metabolizes insulin and has been implicated in the degradation of a number of other bioactive peptides, including amyloid beta peptide (Aβ), glucagon, amylin, and atrial natriuretic peptide. IDE is activated toward some substrates by both peptides and polyanions/anions, possibly representing an important control mechanism an...
متن کاملInositol phosphates and phosphoinositides activate insulin-degrading enzyme, while phosphoinositides also mediate binding to endosomes.
Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid β peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the poly...
متن کاملEffect of Passage Number and Culture Time on the Expression and Activity of Insulin-Degrading Enzyme in Caco-2 Cells
Background: Insulin-degrading enzyme (IDE) is a conserved zinc metallopeptidase. Here, we have evaluated the effect of passage number and culture time on IDE expression and activity in colorectal adenocarcinoma cell line (Caco-2). Methods: Caco-2 cells were cultured with different passage ranges of 5-15, 25-35, 52-63 for 48, 72, and 120 hours. Subsequently, IDE expression and enzyme activity we...
متن کاملEffect of S-Methyl-L-Cysteine on Oxidative Stress, Inflammation and Insulin Resistance in Male Wistar Rats Fed with High Fructose Diet
Background: S-methyl cysteine (SMC) is a hydrophilic cysteine-containing compound naturally found in garlic and onion. The purpose of the present study was to investigate the protective effect of SMC on oxidative stress, inflammation and insulin resistance in an experiment of metabolic syndrome.Methods: Male Wistar rats were divided into five groups (6 rats in each group), namely; control, cont...
متن کاملMutations in a zinc-binding domain of human insulin-degrading enzyme eliminate catalytic activity but not insulin binding.
Insulin-degrading enzyme is a nonlysosomal metalloprotease that initiates degradation of internalized insulin in some cells. We previously identified a potential catalytic site containing an inversion of the Zn(2+)-binding domain of the thermolysin family (Kuo, W.-L., Gehm, B. D., and Rosner, M. R. (1991) Mol. Endocrinol. 4, 1580-1591). The role of this site in catalysis was examined by mutatin...
متن کامل