Natural selection and the genetics of adaptation in threespine stickleback.

نویسندگان

  • Dolph Schluter
  • Kerry B Marchinko
  • R D H Barrett
  • Sean M Rogers
چکیده

Growing knowledge of the molecular basis of adaptation in wild populations is expanding the study of natural selection. We summarize ongoing efforts to infer three aspects of natural selection--mechanism, form and history--from the genetics of adaptive evolution in threespine stickleback that colonized freshwater after the last ice age. We tested a mechanism of selection for reduced bony armour in freshwater by tracking genotype and allele frequency changes at an underlying major locus (Ectodysplasin) in transplanted stickleback populations. We inferred disruptive selection on genotypes at the same locus in a population polymorphic for bony armour. Finally, we compared the distribution of phenotypic effect sizes of genes underlying changes in body shape with that predicted by models of adaptive peak shifts following colonization of freshwater. Studies of the effects of selection on genes complement efforts to identify the molecular basis of adaptive differences, and improve our understanding of phenotypic evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations

Adaptation in the wild often involves standing genetic variation (SGV), which allows rapid responses to selection on ecological timescales. However, we still know little about how the evolutionary histories and genomic distributions of SGV influence local adaptation in natural populations. Here, we address this knowledge gap using the threespine stickleback fish (Gasterosteus aculeatus) as a mo...

متن کامل

Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags...

متن کامل

Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback.

How predictable is the genetic basis of phenotypic adaptation? Answering this question begins by estimating the repeatability of adaptation at the genetic level. Here, we provide a comprehensive estimate of the repeatability of the genetic basis of adaptive phenotypic evolution in a natural system. We used quantitative trait locus (QTL) mapping to discover genomic regions controlling a large nu...

متن کامل

Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus

Adaptation is driven by natural selection; however, many adaptations are caused by weak selection acting over large timescales, complicating its study. Therefore, it is rarely possible to study selection comprehensively in natural environments. The threespine stickleback (Gasterosteus aculeatus) is a well-studied model organism with a short generation time, small genome size, and many genetic a...

متن کامل

Discriminating selection on lateral plate phenotype and its underlying gene, Ectodysplasin, in threespine stickleback.

When a signature of natural selection is discovered on a gene that is pleiotropic or in tight linkage with other genes, it is challenging to determine which of the affected phenotypes is under selection. One way to make progress is to employ methods for analyzing natural selection on correlated traits, including both genotype and phenotype. We used this approach in threespine stickleback to est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 365 1552  شماره 

صفحات  -

تاریخ انتشار 2010