An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation
نویسندگان
چکیده
This paper aims to investigate several new nonlinear/non-Gaussian filters in the context of the sequential data assimilation. The unscentedKalman filter (UKF), the ensemble Kalman filter (EnKF), the sampling importance resampling particle filter (SIR-PF) and the unscented particle filter (UPF) are described in the state-space model framework in the Bayesian filtering background. We first evaluated those methods with a simple highly nonlinear Lorenz model and a scalar nonlinear non-Gaussian model to investigate the filter stability and the error sensitivity, and then their abilities in the one-dimensional estimation of the soil moisture content with the synthetic microwave brightness temperature assimilation experiment in the land surface model VIC-3L. All the results are compared with the EnKF. The advantages and disadvantages of each filter are discussed. The results in the Lorenz model showed that the particle filters are suitable for the large measurement interval assimilation and that the Kalman filters were suitable for the frequent measurement assimilation as well as small measurement uncertainties. The EnKF also showed its feasibility for the non-Gaussian noise. The performance of the SIR-PF was actually not as good as that of the UKF or the EnKF regarding a very small observation noise level compared with the uncertainties in the system. In the one-dimensional brightness temperature assimilation experiment, the UKF, the EnKF and the SIR-PF all proved to be flexible and reliable nonlinear filter algorithms for the low dimensional sequential land data assimilation application. For the high dimensional land surface system that takes the horizontal error correlations into account, the UKF is restricted by its computational demand in the covariance propagation; we must use the EnKF, the SIR-PF and other covariance reduction algorithms. The large computational cost prevents the UPF from being applied in practice. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کاملDevelopment of Nonlinear Lattice-Hammerstein Filters for Gaussian Signals
In this paper, the nonlinear lattice-Hammerstein filter and its properties are derived. It is shown that the error signals are orthogonal to the input signal and also backward errors of different stages are orthogonal to each other. Numerical results confirm all the theoretical properties of the lattice-Hammerstein structure.
متن کاملAn Improved Data Assimilation Scheme for High Dimensional Nonlinear Systems
Nonlinear/non-Gaussian filtering has broad applications in many areas of life sciences where either the dynamic is nonlinear and/or the probability density function of uncertain state is non-Gaussian. In such problems, the accuracy of the estimated quantities depends highly upon how accurately their posterior pdf can be approximated. In low dimensional state spaces, methods based on Sequential ...
متن کاملNotes on data assimilation for nonlinear high-dimensional dynamics: stochastic approach
This manuscript is devoted to the attempts on the design of new nonlinear data assimilation schemes. The variational and sequential assimilation methods are reviewed with emphasis on their performances on dealing with nonlinearity and high dimension of the environmental dynamical systems. The nonlinear data assimilation is based on Bayesian formulation and its approximate solutions. Sequential ...
متن کاملData Assimilation Based on Sequential Monte Carlo Methods for Dynamic Data Driven Simulation
Simulation models are widely used for studying and predicting dynamic behaviors of complex systems. Inaccurate simulation results are often inevitable due to imperfect model and inaccurate inputs. With the advances of sensor technology, it is possible to collect large amount of real time observation data from real systems during simulations. This gives rise to a new paradigm of Dynamic Data Dri...
متن کامل