Regularity of Finite-dimensional Realizations for Evolution Equations
نویسنده
چکیده
We show that a continuous local semiflow of Ck-maps on a finitedimensional Ck-manifold M can be embedded into a local Ck-flow on M under some weak (necessary) assumptions. This result is applied to an open problem in [2]. We prove that finite-dimensional realizations for interest rate models are highly regular objects, namely given by submanifolds M of D(A∞), where A is the generator of a strongly continuous semigroup.
منابع مشابه
Invariant Manifolds for Weak Solutions to Stochastic Equations
Viability and invariance problems related to a stochastic equation in a Hilbert space H are studied. Finite dimensional invariant C submanifolds of H are characterized. We derive Nagumo type conditions and prove a regularity result: Any weak solution, which is viable in a finite dimensional C submanifold, is a strong solution. These results are related to finding finite dimensional realizations...
متن کاملModified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...
متن کاملInvariant Measures and Maximal L2 Regularity for Nonautonomous Ornstein-uhlenbeck Equations
We characterize the domain of the realizations of the linear parabolic operator G defined by (1.4) in L spaces with respect to a suitable measure, that is invariant for the associated evolution semigroup. As a byproduct, we obtain optimal L 2 regularity results for evolution equations with time-depending Ornstein-Uhlenbeck operators.
متن کاملExact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملOn the existence of solution for a $k$-dimensional system of three points nabla fractional finite difference equations
In this paper, we investigate the existence of solution for a k-dimensional system of three points nabla fractional finite difference equations. Also, we present an example to illustrate our result.
متن کامل