Grothendieck inequalities for semidefinite programs with rank constraint
نویسندگان
چکیده
Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: A difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap of the Goemans-Williamson approximation algorithm for MAX CUT can be seen as a Grothendieck inequality. In this paper we consider Grothendieck inequalities for ranks greater than 1 and we give one application in statistical mechanics: Approximating ground states in the n-vector model.
منابع مشابه
The Positive Semidefinite Grothendieck Problem with Rank Constraint
Given a positive integer n and a positive semidefinite matrix A = (Aij ) ∈ R m×m the positive semidefinite Grothendieck problem with rank-nconstraint is (SDPn) maximize m
متن کاملA spatial branch-and-cut method for nonconvex QCQP with bounded complex variables
We develop a spatial branch-and-cut approach for nonconvex Quadratically Constrained Quadratic Programs with bounded complex variables (CQCQP). Linear valid inequalities are added at each node of the search tree to strengthen semidefinite programming relaxations of CQCQP. These valid inequalities are derived from the convex hull description of a nonconvex set of 2 × 2 positive semidefinite Herm...
متن کاملSampling method for semidefinite programs with nonnegative Popov function constraints∗
An important class of optimization problems in control and signal processing involves the constraint that a Popov function is nonnegative on the unit circle or the imaginary axis. Such a constraint is convex in the coefficients of the Popov function. It can be converted to a finitedimensional linear matrix inequality via the Kalman-Yakubovich-Popov lemma. However, the linear matrix inequality r...
متن کاملCORC Technical Report TR-2001-03 Cuts for mixed 0-1 conic programming
In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show t...
متن کاملForbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope
We study a new geometric graph parameter egd(G), defined as the smallest integer r ≥ 1 for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of G, can be completed to a matrix in the convex hull of correlation matrices of rank at most r. This graph parameter is motivated by its relevance to the problem o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theory of Computing
دوره 10 شماره
صفحات -
تاریخ انتشار 2014