Extracting Protein-Protein Interaction based on Discriminative Training of the Hidden Vector State Model
نویسندگان
چکیده
The knowledge about gene clusters and protein interactions is important for biological researchers to unveil the mechanism of life. However, large quantity of the knowledge often hides in the literature, such as journal articles, reports, books and so on. Many approaches focusing on extracting information from unstructured text, such as pattern matching, shallow and deep parsing, have been proposed especially for extracting protein-protein interactions (Zhou and He, 2008). A semantic parser based on the Hidden Vector State (HVS) model for extracting protein-protein interactions is presented in (Zhou et al., 2008). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. Maximum Likelihood estimation (MLE) is used to derive the parameters of the HVS model. In this paper, we propose a discriminative approach based on parse error measure to train the HVS model. To adjust the HVS model to achieve minimum parse error rate, the generalized probabilistic descent (GPD) algorithm (Kuo et al., 2002) is used. Experiments have been conducted on the GENIA corpus. The results demonstrate modest improvements when the discriminatively trained HVS model outperforms its MLE trained counterpart by 2.5% in F-measure on the GENIA corpus.
منابع مشابه
Extracting protein-protein interaction based on discriminative training of the Hidden Vctor State model
Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.
متن کاملExtracting PPIs from MEDLINE using the HVS Model 1 Extracting Protein-Protein Interactions from MEDLINE using the Hidden Vector State Model
Protein-protein interactions referring to the associations of protein molecules are crucial for many biological functions. A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature since most knowledge about them still hides in biomedical publications. We have constructed an information extraction syst...
متن کاملFeatures Extraction For Protein Homology Detection Using Hidden Markov Models Combining Scores
Few years back, Jaakkola and Haussler published a method of combining generative and discriminative approaches for detecting protein homologies. The method was a variant of support vector machines using a new kernel function called Fisher Kernel. They begin by training a generative hidden Markov model for a protein family. Then, using the model, they derive a vector of features called Fisher sc...
متن کاملEffective reranking for extracting protein-protein interactions from biomedical literature
A semantic parser based on the hidden vector state (HVS) model has been proposed for extracting protein-protein interactions. The HVS model is an extension of the basic discrete hidden Markov model, in which context is encoded as a stack-oriented state vector and state transitions are factored into a stack shift operation followed by the push of a new preterminal category label. In this paper, ...
متن کاملBiomedical events extraction using the hidden vector state model
OBJECTIVE Biomedical events extraction concerns about events describing changes on the state of bio-molecules from literature. Comparing to the protein-protein interactions (PPIs) extraction task which often only involves the extraction of binary relations between two proteins, biomedical events extraction is much harder since it needs to deal with complex events consisting of embedded or hiera...
متن کامل