Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use
نویسندگان
چکیده
1. Catchments export nutrients to aquatic ecosystems at rates and ratios that are strongly influenced by land use practices, and within aquatic ecosystems nutrients can be processed, retained, lost to the atmosphere, or exported downstream. The stoichiometry of carbon and nutrients can influence ecosystem services such as water quality, nutrient limitation, biodiversity, eutrophication and the sequestration of nutrients and carbon in sediments. However, we know little about how nutrient stoichiometry varies along the pathway from terrestrial landscapes through aquatic systems. 2. We studied the stoichiometry of nitrogen and phosphorus exported by three catchments of contrasting land use (forest versus agriculture) and in the water column and sediments of downstream reservoirs. We also related stoichiometry to phytoplankton nutrient limitation and the abundance of heterocystous cyanobacteria. 3. The total N : P of stream exports varied greatly among catchments and was 18, 54 and 140 (molar) in the forested, mixed-use and agricultural catchment, respectively. Total N : P in the mixed layers of the lakes was less variable but ordered similarly: 35, 52 132 in the forested, mixed-use and agricultural lake, respectively. In contrast, there was little variation among systems in the C : N and C : P ratios of catchment exports or in reservoir seston. 4. Phytoplankton in the forested lake were consistently N limited, those in the agricultural lake were consistently P limited, and those in the mixed-use lake shifted seasonally from Pto N limitation, reflecting N : P supply ratios. Total phytoplankton and cyanobacteria biomass were highest in the agricultural lake, but heterocystous (potentially N fixing) cyanobacteria were most abundant in the forested lake, corresponding to low N : P ratios. 5. Despite large differences in catchment export and water column N : P ratios, the N : P of sediment burial (integrated over several decades) was very low and remarkably similar (4.3–7.3) across reservoirs. N and P budgets constructed for the agricultural reservoir suggested that denitrification could be a major loss of N, and may help explain the relatively low N : P of buried sediment. 6. Our results show congruence between the catchment export N : P, reservoir N : P, phytoplankton N versus P limitation and the dominance of heterocystous cyanobacteria. However, the N : P stoichiometry of sediments retained in the lakes was relatively insensitive to catchment stoichiometry, suggesting that a common set of biogeochemical processes constrains sediment N : P across lakes of contrasting catchment land use.
منابع مشابه
Using models to bridge the gap between land use and algal blooms: An example from the Loweswater catchment, UK
The goods and services that lakes provide result from complex interactions between meteorology, hydrology, nutrient loads and in-lake processes. Hydrology and nutrient loads are, in turn, influenced by socio-economic factors such as human habitation, water abstraction and land-management, within their catchments. Models provide a means of linking these different domains and also of forecasting ...
متن کاملVariation in particulate C : N : P stoichiometry across the Lake Erie watershed from tributaries to its outflow
Human activities can cause large alterations in biogeochemical cycles of key nutrients such as carbon (C), nitrogen (N), and phosphorus (P). However, relatively little is known about how these changes alter the proportional fluxes of these elements across ecosystem boundaries from rivers to lakes. Here, we examined environmental factors influencing spatial and temporal variation in particulate ...
متن کاملInfluence of land use on stream ecosystem function in a Mediterranean catchment
1. Due to the hierarchical organization of stream networks, land use changes occurring at larger spatial scales (i.e. the catchment) can affect physical, chemical and biological characteristics at lower spatial scales, ultimately altering stream structure and function. Anthropogenic effects on streams have primarily been documented using structural metrics such as water chemistry, channel alter...
متن کاملEffects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region
Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or con...
متن کاملPhysiographic gradients determine nutrient concentrations more than land use in a Gulf Slope (USA) river system
Riverine ecosystems are linked to their watersheds, and both land use and physiographic environmental conditions influence nutrient dynamics and water quality. We assessed aquatic nutrients and their relationship with land use and physiographic conditions at multiple spatial scales in the Brazos River watershed (Texas, USA) to examine the interactions between land use and physiography and their...
متن کامل