Photoperiod-mediated impairment of long-term potention and learning and memory in male white-footed mice.

نویسندگان

  • J C Walton
  • Z Chen
  • Z M Weil
  • L M Pyter
  • J B Travers
  • R J Nelson
چکیده

Adult mammalian brains are capable of some structural plasticity. Although the basic cellular mechanisms underlying learning and memory are being revealed, extrinsic factors contributing to this plasticity remain unspecified. White-footed mice (Peromyscus leucopus) are particularly well suited to investigate brain plasticity because they show marked seasonal changes in structure and function of the hippocampus induced by a distinct environmental signal, viz., photoperiod (i.e. the number of hours of light/day). Compared to animals maintained in 16 h of light/day, exposure to 8 h of light/day for 10 weeks induces several phenotypic changes in P. leucopus, including reduction in brain mass and hippocampal volume. To investigate the functional consequences of reduced hippocampal size, we examined the effects of photoperiod on spatial learning and memory in the Barnes maze, and on long-term potentiation (LTP) in the hippocampus, a leading candidate for a synaptic mechanism underlying spatial learning and memory in rodents. Exposure to short days for 10 weeks decreased LTP in the Schaffer collateral-CA1 pathway of the hippocampus and impaired spatial learning and memory ability in the Barnes maze. Taken together, these results demonstrate a functional change in the hippocampus in male white-footed mice induced by day length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testosterone and photoperiod interact to affect spatial learning and memory in adult male white-footed mice (Peromyscus leucopus).

Gonadal hormones affect spatial learning and memory in mammals and circulating gonadal hormone concentrations fluctuate by season. Most nontropical rodents are spring/summer breeders and males display higher testosterone concentrations during the breeding season compared with the nonbreeding season (fall/winter). Seasonal patterns of testosterone concentration (as well as many other seasonal mo...

متن کامل

Short photoperiods impair spatial learning and alter hippocampal dendritic morphology in adult male white-footed mice (Peromyscus leucopus).

Although seasonal changes in brain morphology and function are well established in songbirds, seasonal plasticity of brain structure and function remain less well documented in mammals. Nontropical animals display many adaptations to reduce energy use to survive winter, including cessation of reproductive activities. Because of the high energetic costs of brain tissue, we hypothesized that male...

متن کامل

Exogenous melatonin reproduces the effects of short day lengths on hippocampal function in male white-footed mice, Peromyscus leucopus.

Photoperiodism is a biological phenomenon, common among organisms living outside of the tropics, by which environmental day length is used to ascertain the time of year to engage in seasonally-appropriate adaptations. White-footed mice (Peromyscus leucopus) are small photoperiodic rodents which display a suite of adaptive winter responses to short day lengths mediated by the extended duration o...

متن کامل

Social environment modulates photoperiodic immune and reproductive responses in adult male white-footed mice (Peromyscus leucopus).

Social cues may interact with photoperiod to regulate seasonal adaptations in photoperiod-responsive rodents. Specifically, photoperiod-induced adjustments (e.g., reproduction and immune function) may differ among individuals in heterosexual pairs, same-sex pairs, or isolation. Heterosexual cues may be more influential, based on their potential fitness value, than same-sex cues or no social cue...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2011