Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle.

نویسندگان

  • Lars Holm
  • Gerrit van Hall
  • Adam J Rose
  • Benjamin F Miller
  • Simon Doessing
  • Erik A Richter
  • Michael Kjaer
چکیده

Exercise stimulates muscle protein fractional synthesis rate (FSR), but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intrasubject design in the fasted (n = 10) and fed (n = 10) states. RE consisted of 10 sets of knee extensions. One leg worked against light load (LL) at 16% of one-repetition maximum (1RM), the other leg against heavy load (HL) at 70% 1RM, with intensities equalized for total lifted load. Males were infused with [(13)C]leucine, and vastus lateralis biopsies were obtained bilaterally at rest as well as 0.5, 3, and 5.5 h after RE. Western blots were run on muscle lysates and phosphospecific antibodies used to detect phosphorylation status of targets involved in regulation of FSR. The intramuscular collagen FSR was evenly increased following LL- and HL-RE and was not affected by feeding. Myofibrillar FSR was unaffected by LL-RE, whereas HL-RE resulted in a delayed improvement (0.14 +/- 0.02%/h, P < 0.05). Myofibrillar FSR was increased at rest by feeding (P < 0.05) and remained elevated late in the postexercise period compared with the fasting condition. The Rp-s6k-4E-binding protein-1 (BP1) and the mitogen-activated protein kinase (MAPk) pathways were activated by the HL intensity and were suggested to be responsible for regulating myofibrillar FSR in response to adequate contractile activity. Feeding predominantly affected Rp-s6k and eukaryotic elongation factor 2 phosphorylations in correspondence with the observed changes in myofibrillar FSR, whereas 4E-BP1 remained to respond only to the HL contraction intensity. Thus the study design allows us to conclude that the MAPk- and mammalian target of rapamycin-dependent signaling responds to contractile activity, whereas elongation mainly was found to respond to feeding. Furthermore, although functionally linked, the contractile and the supportive matrix structures upregulate their protein synthesis rate quite differently in response to feeding and contractile activity and intensity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein turnover, amino acid requirements and recommendations for athletes and active populations

Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sess...

متن کامل

No effect of menstrual cycle on myofibrillar and connective tissue protein synthesis in contracting skeletal muscle.

We tested the hypothesis that acute exercise would stimulate synthesis of myofibrillar protein and intramuscular collagen in women and that the phase of the menstrual cycle at which the exercise took place would influence the extent of the change. Fifteen young, healthy female subjects were studied in the follicular (FP, n=8) or the luteal phase (LP, n=7, n=1 out of phase) 24 h after an acute b...

متن کامل

Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols

Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...

متن کامل

Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions.

We aimed to determine whether there were differences in the extent and time course of skeletal muscle myofibrillar protein synthesis (MPS) and muscle collagen protein synthesis (CPS) in human skeletal muscle in an 8.5-h period after bouts of maximal muscle shortening (SC; average peak torque = 225 +/- 7 N.m, means +/- SE) or lengthening contractions (LC; average peak torque = 299 +/- 18 N.m) wi...

متن کامل

Roles of creatine in the regulation of cardiac protein synthesis

The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 298 2  شماره 

صفحات  -

تاریخ انتشار 2010